
ScriptBasic Users Guide

Peter Verhas

Copyright c© 1999-2001 Peter Verhas Published by peter.verhas.com

i

Short Contents

1 Introduction. 1

2 Using ScriptBasic . 3

3 Installation Instructions . 11

4 Code caching . 21

5 Compiling BASIC programs . 23

6 Compiling BASIC program to EXE 27

7 Compiling BASIC programs to C. 29

8 Compiling ScriptBasic with modules 31

9 General Language Format . 33

10 Interacting with the user . 67

11 Name spaces . 69

12 File Handling . 73

13 Networking. 89

14 String handling commands . 91

15 Conditional Execution . 95

16 The statement GOTO . 97

17 Loop constructs . 99

18 Functions and Subroutines . 101

19 Reference Variables . 111

20 Pattern matching. 113

21 Handling run-time errors . 117

22 Setting options . 123

23 Other miscellaneous commands . 125

24 Using External modules . 127

25 Command reference . 129

ii ScriptBasic Users Guide

iii

Table of Contents

1 Introduction . 1

2 Using ScriptBasic . 3
2.1 Running from command line . 3
2.2 Running CGI programs . 9
2.3 Writing CGI programs . 9

3 Installation Instructions 11
3.1 Installation under Windows . 11

3.1.1 Installation under Windows from source 11
3.2 Installation under Linux . 12
3.3 Installation under other Unices . 12
3.4 Configuration . 12
3.5 Configuration file location under Windows NT. 17
3.6 Configuration file location under UNIX 18
3.7 Overriding the default configuration file 18
3.8 Trouble shooting installation . 18

4 Code caching . 21
4.1 How cache file name is calculated . 21
4.2 Cache handling shortages . 21
4.3 Cache security . 22

5 Compiling BASIC programs 23
5.1 Binary format of the BASIC code . 23

6 Compiling BASIC program to EXE 27
6.1 BASIC to EXE compilation technical details 27

7 Compiling BASIC programs to C 29
7.1 Compilation under Windows NT . 29
7.2 Compilation under UNIX . 30

8 Compiling ScriptBasic with modules 31

iv ScriptBasic Users Guide

9 General Language Format 33
9.1 Hello World. 33
9.2 Strings . 33
9.3 Numbers . 35
9.4 Variables . 36
9.5 Constants . 38
9.6 Forcing Variable Declaration . 42
9.7 Arrays . 43

9.7.1 Creating arrays . 44
9.7.2 Array index limits . 45
9.7.3 Deleting an array . 46

9.8 Associative Arrays . 47
9.8.1 Notes for using associative arrays 50

9.9 Using Array Mixed Mode . 50
9.10 Expressions . 51

9.10.1 Operators . 52
9.10.1.1 Power operator (^) 52
9.10.1.2 Multiplication operator (*) 53
9.10.1.3 Division operator (/) 53
9.10.1.4 Integer division operator (\) 53
9.10.1.5 Modulus operator (%) 53
9.10.1.6 Addition and subtraction operators (+, -)

. 54
9.10.1.7 Bit-wise and logical NOT (NOT) 54
9.10.1.8 Equality operator (=) 54
9.10.1.9 Not equal operator (<>) 55
9.10.1.10 Compare operators (<, <=, >, >=) 55
9.10.1.11 Logical operators (and, or, xor) 55
9.10.1.12 Concatenation operator (&) 56
9.10.1.13 ByVal operator . 56
9.10.1.14 LIKE operator . 56
9.10.1.15 Extension operators 56
9.10.1.16 Planned, Future Operators 57

9.11 Assignments (LET) . 57
9.12 Operator Assignments . 58
9.13 Comments . 58
9.14 Including Files . 59
9.15 Internal preprocessors . 61
9.16 Using external preprocessor . 62
9.17 #! /usr/bin/scriba . 64
9.18 @goto start . 64
9.19 #!/@goto . 64

10 Interacting with the user 67
10.1 Print . 67
10.2 Input . 67
10.3 Handling command line arguments . 68

v

11 Name spaces . 69

12 File Handling. 73
12.1 Opening and creating files . 73
12.2 Text and binary files . 73
12.3 Switching between binary and text mode 75
12.4 Getting a free file number . 76
12.5 Positioning in a file . 77
12.6 Reading and writing files . 78
12.7 Getting and setting the current working directory. 79
12.8 Locking a file . 79
12.9 Locking file range . 81
12.10 Truncating a file . 82
12.11 Deleting a file or directory . 82
12.12 Creating a directory . 83
12.13 Setting file parameters . 83
12.14 Listing files . 84

12.14.1 Open directory . 84
12.14.2 Function NextFile . 86
12.14.3 Function EOD . 86
12.14.4 Reset directory . 86
12.14.5 Close directory . 87

13 Networking . 89
13.1 Opening a Socket . 89
13.2 Getting the host name . 89

14 String handling commands 91
14.1 Split and splita . 91
14.2 Unpack . 93

15 Conditional Execution 95

16 The statement GOTO. 97

17 Loop constructs . 99

vi ScriptBasic Users Guide

18 Functions and Subroutines 101
18.1 Declaration of subroutines and function 101
18.2 Calling functions and subroutines . 101
18.3 Returning a value . 103
18.4 Local and global variables . 103
18.5 More on local and global variables . 104
18.6 Parameters passed by value and by reference 105
18.7 ByVal command . 105
18.8 Calling functions indirectly . 106
18.9 GOSUB and RETURN . 108

19 Reference Variables . 111

20 Pattern matching . 113
20.1 The operator LIKE. 113
20.2 The function JOKER. 113
20.3 Escaping wild cards . 114
20.4 Ambiguous matching . 115
20.5 Advanced matching . 115

21 Handling run-time errors. 117
21.1 On error goto . 117
21.2 Resume . 118
21.3 RESUME . 118
21.4 Levels of error handling . 119
21.5 Error codes . 122

22 Setting options . 123

23 Other miscellaneous commands 125
23.1 Sleep . 125

24 Using External modules 127

vii

25 Command reference . 129
25.1 ABS . 129
25.2 ACOS . 129
25.3 ACOSECANT . 129
25.4 ACTAN . 129
25.5 ADDDAY . 129
25.6 ADDHOUR . 129
25.7 ADDMINUTE . 130
25.8 ADDMONTH . 130
25.9 ADDRESS(myFunc()) . 130
25.10 ADDSECOND . 130
25.11 ADDWEEK . 131
25.12 ADDYEAR . 131
25.13 ASC(string) . 131
25.14 ASECANT . 131
25.15 ASIN . 131
25.16 ATAN. 132
25.17 ATN . 132
25.18 BIN . 132
25.19 BINMODE [# fn] | input | output 132
25.20 CALL subroutine . 132
25.21 CHDIR directory . 133
25.22 CHOMP() . 134
25.23 CHR(code) . 134
25.24 CINT . 134
25.25 CLOSE [#] fn . 134
25.26 CLOSE DIRECTORY [#] dn . 135
25.27 COMMAND() . 135

25.27.1 COMMANDF Details. 135
25.28 Concatenate operator &. 136
25.29 CONF("conf.key") . 136
25.30 COS . 137
25.31 COSECANT . 137
25.32 COTAN . 137
25.33 COTAN2 . 137
25.34 CRYPT(string,salt) . 138
25.35 CURDIR() . 138
25.36 CVD . 138
25.37 CVI . 138
25.38 CVL . 138
25.39 CVS . 139
25.40 DAY . 139
25.41 DECLARE COMMAND function ALIAS cfun LIB library

. 139
25.41.1 DECLARECOMMAND Details 139

25.42 DECLARE SUB function ALIAS cfun LIB library 140
25.42.1 DECLARESUB Details . 140

25.43 DELETE file/directory name . 143

viii ScriptBasic Users Guide

25.44 DELTREE file/directory name . 144
25.45 DO . 145
25.46 DO UNTIL condition . 145
25.47 DO WHILE condition . 146
25.48 END . 146
25.49 ENVIRON("envsymbol") or ENVIRON(n) 146

25.49.1 ENVIRON Details . 147
25.50 EOD(dn) . 147
25.51 EOF(n) . 148
25.52 ERROR() or ERROR n . 148
25.53 ERROR$() or ERROR$(n) . 148
25.54 EVEN . 148
25.55 EXECUTE("executable program", time out,pid v) 149

25.55.1 EXECUTE Details . 149
25.55.2 EXECUTE Details . 150
25.55.3 EXECUTE Details . 150

25.56 EXIT FUNCTION . 151
25.57 EXIT SUB . 151
25.58 EXP . 151
25.59 FALSE . 151
25.60 FILEACCESSTIME(file name) . 151
25.61 FILECOPY filename,filename . 152
25.62 FILECREATETIME(file name) . 153
25.63 FILEEXISTS(file name) . 153
25.64 FILELEN(file name) . 153
25.65 FILEMODIFYTIME(file name) . 154
25.66 FIX . 154
25.67 LOCK # fn, mode . 154
25.68 FOR var=exp start TO exp stop [STEP exp step] . . . 156
25.69 FORK() . 158
25.70 FORMAT() . 158
25.71 FORMATDATE . 159

25.71.1 FORMATDATE Details . 159
25.72 FILEOWNER(FileName) . 160
25.73 FRAC . 160
25.74 FREEFILE() . 160
25.75 FUNCTION fun(). 161

25.75.1 FUNCTION Details . 161
25.76 GCD . 162
25.77 GMTIME . 162
25.78 GMTOLOCALTIME . 162
25.79 GOSUB label . 162
25.80 GOTO label . 163
25.81 HCOS . 163
25.82 HCOSECANT . 163
25.83 HCTAN . 163
25.84 HEX(n) . 163
25.85 HOSTNAME() . 164

ix

25.86 HOUR . 164
25.87 HSECANT . 164
25.88 HSIN . 164
25.89 HTAN . 164
25.90 ICALL n,v1,v2, ... ,vn . 164

25.90.1 ICALL Details . 164
25.91 IF condition THEN . 166
25.92 IMAX . 167
25.93 IMIN . 167
25.94 INPUT(n,fn) . 167
25.95 INSTR(base string,search string [,position]). 168
25.96 INSTRREV(base string,search string [,position]) 169
25.97 INT . 169
25.98 ISARRAY . 169
25.99 ISDEFINED . 169
25.100 ISDIRECTORY(file name) . 170
25.101 ISEMPTY . 170
25.102 ISINTEGER. 170
25.103 ISNUMERIC . 170
25.104 ISREAL . 171
25.105 ISFILE(file name) . 171
25.106 ISSTRING . 171
25.107 ISUNDEF . 171
25.108 JOIN(joiner,str1,str2,...) . 172

25.108.1 JOIN Details . 172
25.109 JOKER(n) . 172

25.109.1 JOKER Details . 172
25.110 KILL(pid) . 173
25.111 LBOUND . 174
25.112 LCASE() . 174
25.113 LCM . 174
25.114 LEFT(string,len). 174

25.114.1 LEFT Details . 174
25.115 LEN() . 175
25.116 v = expression . 175
25.117 v &= expression . 175
25.118 v /= expression . 176
25.119 v \= expression . 176
25.120 v -= expression . 176
25.121 v += expression . 176
25.122 v *= expression . 176
25.123 string LIKE pattern . 177

25.123.1 LIKE Details. 177
25.124 LINE INPUT . 180
25.125 LOC() . 181
25.126 LOCATLTOGMTIME . 182
25.127 LOCK # fn, mode . 182

x ScriptBasic Users Guide

25.128 LOCK REGION # fn FROM start TO end FOR mode
. 183

25.129 LOF() . 183
25.130 LOG . 184
25.131 LOG10 . 184
25.132 LTRIM() . 185
25.133 MAX . 185
25.134 MAXINT . 185
25.135 MID(string,start [,len]) . 185

25.135.1 MID Details . 185
25.136 MIN . 186
25.137 MININT . 186
25.138 MINUTE . 186
25.139 MKD . 187
25.140 MKDIR directory name . 187
25.141 MKI . 188
25.142 MKL. 188
25.143 MKS . 188
25.144 MONTH . 188
25.145 NAME filename,filename . 188
25.146 NEXTFILE(dn) . 189
25.147 NOW . 189
25.148 OCT(n) . 190
25.149 ODD . 190
25.150 ON ERROR GOTO [label | NULL] 190
25.151 ON ERROR RESUME [label | next] 190
25.152 OPEN file name FOR mode AS [#] i [

LEN=record length] . 190
25.153 OPEN DIRECTORY dir name PATTERN pattern

OPTION option AS dn . 194
25.154 OPTION symbol value . 197
25.155 OPTION("symbol") . 197
25.156 pack("format",v1,v2,...,vn) . 197
25.157 PAUSE . 198
25.158 PI . 198
25.159 POP . 198
25.160 POW . 199
25.161 PRINT [# fn ,] print list . 199
25.162 RANDOMIZE . 200
25.163 ref v1 = v2 . 200
25.164 REPEAT . 201
25.165 REPLACE(base string,search string,replace string

[,number of replaces] [,position]) . 201
25.166 RESET . 202
25.167 RESET DIRECTORY [#] dn . 202
25.168 RESUME [label | next] . 202
25.169 RETURN . 203
25.170 REWIND [#]fn . 203

xi

25.171 RIGHT(string,len) . 203
25.171.1 RIGHT Details . 203

25.172 RND . 203
25.173 ROUND . 204
25.174 RTRIM() . 204
25.175 SEC . 204
25.176 SECANT . 204
25.177 SEEK fn,position . 204
25.178 SET FILE filename parameter=value 205
25.179 SET JOKER "c" TO "abcdefgh..." 207
25.180 SET WILD "c" TO "abcdefgh..." 207
25.181 SIN . 207
25.182 SLEEP(n) . 207
25.183 SPACE(n) . 209
25.184 SPLIT string BY string TO var 1,var 2,var 3,...,var n

. 209
25.185 SPLITA string BY string TO array 209
25.186 SPLITAQ string BY string QUOTE string TO array . . 209
25.187 SQR . 210
25.188 STOP . 210
25.189 STR(n) . 210

25.189.1 STR Details . 210
25.190 STRING(n,code) . 210
25.191 STRREVERSE(string) . 211
25.192 SUB fun() . 211
25.193 swap a,b . 211
25.194 SYSTEM(executable program) . 211
25.195 TAN . 212
25.196 TAN2 . 212
25.197 TEXTMODE [# fn] | input | output 212
25.198 TIMEVALUE . 212
25.199 TRIM() . 213
25.200 TRUE . 213
25.201 TRUNCATE fn,new length . 213
25.202 TYPE . 214
25.203 UBOUND . 214
25.204 UCASE() . 214
25.205 UNDEF variable . 214

25.205.1 UNDEF Details . 215
25.206 UNPACK string BY format TO v1,v2,...,vn 215
25.207 VAL . 215
25.208 WAITPID(PID,ExitCode) . 215
25.209 WEEKDAY . 216
25.210 WHILE condition . 216
25.211 YEAR . 216
25.212 YEARDAY . 216

xii ScriptBasic Users Guide

Chapter 1: Introduction 1

1 Introduction

ScriptBasic is a BASIC language interpreter with several features that makes it unique.
First of all ScriptBasic itself is free and is supported by the GNU LGPL licence. Note
that the GNU LGPL licence (http://www.gnu.org/copyleft/lesser.txt) applies only
to ScriptBasic itself, while the modules interfacing 3rd party software may apply different
licenses. For example the module interface code for the module T<bdb> is under LGPL,
but the library it uses, namely the Berkeley DB is NOT LGPL!

ScriptBasic runs on Windows NT, Windows95, Linux, Tru64 UNIX and probably on
many other platforms. ScriptBasic the ideal tool to write small scripts that gurus write in
Perl. However you need not be a guru to powerfully program in ScriptBasic.

This is not the only situation to consider ScriptBasic. ScriptBasic can be a valuable tool
for experts as well as a language interpreter ready to be built into their application. Read
the list of ScriptBasic features and decide how you can use it.

IT IS BASIC. No question, this is the MOST important feature of ScriptBasic. There
are a lot of people who can program BASIC and only BASIC. There are many people,
who can not really program. Those who do not really know what programming is, and
still: they write their five-liners in BASIC to solve their simple problems. They never
write Perl, Tcl, Java or C. Therefore it is BASIC.
SCRIPTING language. There are no data types in the language. You can store real
numbers, integer numbers and strings in any variable. You can mix them and conversion
is done automatically. Therefore the language is very simple and easy to use.
PORTABLE Available in C source and can be compiled on UNIXes as well as on
Windows NT.
4E LANGUAGE, which means easy to extend, easy to embed. ScriptBasic was devel-
oped to provide clean and clear interfaces around it, and inside it. It is easy to embed
the language to an application and use it as a macro language just like TCL. It is also
easy to implement new built-in function and new commands. You can develop dynam-
ically loaded libraries that ScriptBasic may load at run time. The language source is
clean, well documented and development guides are available.
COMPILED CODE ScriptBasic creates intermediate compiled code, which is inter-
preted afterwards. This can protect intellectual property for the BASIC programmer
and faster code loading.

Syntax analysis is done at first and only syntactically perfect programs start to
run.
The compiled code is put into a continuous memory space and compiled code can
be saved and loaded again to run without recompilation. This is vital for CGI
scripts and is not available for most scripting programming languages.
Compiled code is binary, not readable. Therefore you can develop and distribute
programs and getting some help to protect your intellectual property. You need
not give the source code.

MULTI THREAD aware. Although the current implementation is not multi thread,
all the code was designed to be thread safe. You can embed the code into systems
that run multiple interpreters in the same process. On the other hand the interpreter

2 ScriptBasic Users Guide

can run the same code in multiple threads and was designed to be capable handling
call-back functions, and multithread programs in the future.

This documentation is the User’s Guide for the so-called STANDARD variation of the
interpreter. This code runs on the command line, accepts command line arguments and
runs a single program in a single process. Other variations exist, which are based on the
same code but exhibit different interfaces to the system. Some features for those variations
may be different, but most language features probably remain the same. The variation
Eszter SB Application Engine is shipped with the ScriptBasic package and is embedding
the interpreter into a multi-thread, single process web server. Other embedded variations
are available from independent developers.

This document describes how to use the interpreter and the programming language.

Chapter 2: Using ScriptBasic 3

2 Using ScriptBasic

This chapter is about the STANDARD variation of the interpreter. Starting and using
other variations may probably be different.

2.1 Running from command line

There are several ways to start a ScriptBasic program. The different ways also depend
on the installation. Windows NT may associate the extension T<.sb> with the ScriptBasic
interpreter. In this case you can start a ScriptBasic program double clicking on its name
in the explorer. You can type the name of the text file containing your basic program and
UNIX will start it for you automatically if the first line of the program contains the starting
information like

#! /usr/bin/scriba

and the file itself is executable. The simplest way among all is to type the name of the
executable. First try to start it without any command line argument:

$ scriba
Usage: basic [options] program.bas

options: -o file_name
specify output file, save binary format to file but don’t execute

-b file_name
load binary format from file and execute

-n
do not use cache (no save, no load)

-e
execute after binary format was saved

-v
print version info and stop

-c
inform scriba that this is a CGI script.

-C
save C program output.

-E
save executable output. (may not work under some OS)

-p preprocessor
specify external preprocessor.

-i preprocessor
specify internal preprocessor.

-f configurationfile
specify configuration file

-d
debug module error (UNIX only)

-k text_config_file
compile the configuration file to binary

4 ScriptBasic Users Guide

-D
dump the configuration file in text format

The program does not insist on its name, the person installing can name it basic, scriba
or any other name. However scriba is the preferred name for the executable. When you
start the program without arguments it tells you the different options. If the program does
not start check that the executable is in the path or specify the full path to the executable.
Under UNIX you may need to start ScriptBasic after you have compiled as ./scriba

The compilation and execution of the code can be altered and driven by command line
options. There are not too many and usually you do not need any. If you want to start a
basic program you can type:

$ scriba hello.bas
Hello world!
$ _

The program will execute the basic code and after executing the final statement it exists
the process.

OPTION -o
ScriptBasic STANDARD variation is able to dump the compiled code to a file and later

use this image to execute the basic program. To do this you can type
$ scriba -o hello.bbf hello.bas

This command will compile the program hello.bas into the file hello.bbf. The code
itself will not be executed. The extension bbf stands for basic binary format, but you can
use any extension. ScriptBasic does not assume any default extensions.

OPTION -b
The saved binary format can be executed by the interpreter issuing the command

$ scriba -b hello.bbf

The switch ‘-b’ tells the interpreter that the file is already a compiled format and it
needs only execution. However ScriptBasic STANDARD variation is intelligent enough to
recognize the binary format and it will not try to interpret it as basic text even if you miss
the switch ‘-b’. The command line

$ scriba hello.bbf

should also work. The switch ‘-b’ is available because recognizing the binary format
applies some heuristics and using the ‘-b’ switch to execute a compiled basic program is
the safe way.

Note that the compiled format is not compiled in the sense of usual compilers. The
compiled format is NOT machine executable. This is the internal format that the interpreter
interprets and executes. This format is created and stored in memory each time a basic
program is executed. When the ‘-o’ switch is used this internal format is saved and can be
reloaded later to execute again the basic program.

This binary format is proprietary and is NOT portable. This binary format was designed
to load the programs fast and allow the interpreter speedy startup for codes executed many
times. You have to "compile" your basic code on the architecture you want to run it.
It needs not be physically the same machine, but it should be the same type of operating
system, the same compiler used to compile ScriptBasic executable and the same ScriptBasic

Chapter 2: Using ScriptBasic 5

version and build number. The different variations may accept each others binary format.
For example the Eszter SB Application Engine variation accepts the binary format created
by the STANDARD variation. We recognized that the STANDARD variation running on
Linux compiled with gcc can execute the binary format generated by the Windows NT
version of ScriptBasic, but this is only the fact of life and it is not a guaranteed feature.

OPTION -e
In certain situations you may want to save the binary format and execute the code the

same time. In this situation you can issue the command line:
$ scriba -o hello.bbf -e hello.bas

The switch ‘-e’ tells ScriptBasic to execute the code. This is not the normal behavior
when binary format is saved to file. Note that you need the switch ‘-e’ only when the
switch ‘-o’ is also on the command line. To execute a program without saving the binary
format to a file you need no switches at all.

OPTION -n
The binary format of the code is usually saved into a directory without user intervention.

The cache directory is defined in the configuration file using the configuration key cache.
In certain situation you want to avoid caching of the code. If you use the command line
option ‘-n’ neither cache checking for newer version nor cache writing will be performed.

OPTION -c
You should use the ‘-c’ option in programs that are executed as CGI scripts. This helps

the error reporting system to cooperate with the web server and send properly formatted
HTML formatted errors whenever and error occurs.

OPTION -C
The option ‘-C’ asks the interpreter to generate C language compiled code. For more

about this option read in See 〈undefined〉 [Compiling BASIC programs to C], page 〈unde-
fined〉.

OPTION -E
The option ‘-E’ asks the interpreter to create a stand alone executable from the BASIC

program. This is an option that works only on some platform, but not on all. It does work
on Windows and under Linux and some users reported success using it under FreeBSD
and Solaris. When using this option the interpreter creates a file that can be started and
contains the compiled BASIC program in itself. This is not a compilation just as well as
compiling into binary format is not a real compilation. It copies the binary executable code
of the interpreter and the binary format of the BASIC program into one file and sets it so
that executes the BASIC program embedded into the executable file.

When you use this option under Linux, you have to specify the full path to the interpreter.
Thus you may not successfully execute

scriba Eo test test.sb

but rather you have to type:
/usr/bin/scriba Eo test test.sb

This is because ScriptBasic relies on the command line to find the executable file it
has to copy into the created output executable. If you do not know where the ScriptBasic
interpreter is installed you can type the command:

6 ScriptBasic Users Guide

which scriba

to find out the exact location.

Also note that the generated file can not be executed immediately after it has been
generated. You have to set the execute permission on the generated file, for example:

chmod u+x test

before you can issue the command

./test

OPTION -p

The option ‘-p’ should be used to specify an external preprocessor. This preprocessor
has to be configured in the configuration file of ScriptBasic. Ask the system manager
responsible for your installation about the available preprocessors. If this person is you
read the section See 〈undefined〉 [Using external preprocessor], page 〈undefined〉. You can
specify more than one preprocessors on the line. These are executed one after the other
in the order they are specified on the command line. If no preprocessor is defined on
the command line the interpreter will execute the preprocessor or preprocessors that are
assigned to the extensions of the source file name. The assignments should be configured
in the ScriptBasic configuration file.

OPTION -i

The option ‘-i’ specifies an internal preprocessor. Internal pre-processors are imple-
mented as DLL or SO file. These programs are loaded by the ScriptBasic interpreter when
the command line option ‘-i’ is used, or when the program contains the command USE.
The internal pre-processor can alter the source code after the interpreter read the code into
memory, but also can do a lot of other things while ScriptBasic compiles the code, and
some of them even during run time. For more information on internal pre-processors read
the guide of the actual pre-processor, or read the developers guide that details how internal
pre-processors should be developed.

The argument to this option has to be the name of the internal preprocessor as configured
in the configuration file. For example, to start the program in command line debugger mode
the user has to type:

scriba -i dbg hello.bas

The program will load the preprocessors in the order they are specified.

OPTION -f

When ScriptBasic starts it reads its configuration file. Some programs can run without
any configuration information, however more complex programs will need external modules
and this most probably will require configuration. The configuration file is located usually
at ‘/etc/scriba/basic.conf’ under UNIX or in the same directory where the executable
is under Windows NT. However in some situation you may want to run ScriptBasic using
some special configuration file. In this case you can specify the configuration file using
the option ‘-f’. The argument to this option is the name of the file that is the compiled
configuration information. The only exception is when you are using this option along with
the option ‘-k’ to compile the configuration information. In this case the argument to the
option ‘-f’ has to be the name of the configuration file that is to be created.

OPTION -d

Chapter 2: Using ScriptBasic 7

The option ‘-d’ is a special one and you need it only when you try to find out config-
uration errors you made. The option can be used under UNIX as well as under Windows.
However ScriptBasic will print out different errors under the different operating systems.

You can also use this option when a configuration file can not be compiled and ScriptBasic
reports that there are errors in the configuration file. Be prepared that ScriptBasic may
print out quite a huge portion of the configuration file following the error to specify the
location of the error.

On UNIX the option ‘-d’ prints out the system error message when an external module
fails to load. Without this option the interpreter says: ’module can not be loaded’, but you,
the installer of the module do not know why. Here is the reason why it is needed in some
cases on UNIX and why not under Windows.

On Windows when you compile source code to DLL all symbolic references have to be
resolved. If a module uses the zlib.lib for example, you have to link it against the DLL
during link time. UNIX is more allowing. If you miss the ‘-lz’ (to stay with the example of
needing zlib) when you link the shared object the linker does not complain, because UNIX
dynamic loading system allows symbolic reference resolution during run time. However
when you run ScriptBasic and want to load the module this missing function appears
immediately.

A real word example is the MySQL module. The first version of ScriptBasic MySQL
module supported MySQL v3.22. The version v3.23 already required the zlib library. The
v2.23 was tested only on Windows NT and when it was first compiled by a FreeBSD user,
the module was not loadable. He needed the ‘-d’ to see the error, which said ’unresolved
reference: uncompress’ making immediately clear that the option ‘-lz’ had to be added to
the UXLIBS: line in the file interface.c.

Using the option ‘-d’ ScriptBasic will print out the directories where it seeks include
files and modules.

OPTION -k

The option ‘-k’ can and should be used to compile a text configuration file to binary
format. In this case the input file name should specify a text format configuration file and
not a BASIC program. The output file can be specified by the option ‘-f’, but it is not a
must. If the option ‘-f’ is not used along with the option ‘-k’ the output file will be the
default configuration file.

Note that ScriptBasic command line parsing is the same when you use the option ‘-k’
as it is when executing a program. Therefore all options, typically the option ‘-f’ should
precede the input file name. If the option ‘-f’ is placed after the input file name, the
command line parsing program believes that it will be some command line argument for
the BASIC program and ignores it.

OPTION -D

The option ‘-D’ can be used to display the content of the current compiled configuration
file. ScriptBasic will read the configuration file and dump the content formatted according
to the text configuration syntax to the standard output. You can use the option ‘-f’ to
specify an alternate compiled configuration file if not the default is to be debugged. If an
output file is specified using the option ‘-o’ along with the option ‘-D’ the text content of
the configuration file is printed into the output file. The output can be sent to the standard

8 ScriptBasic Users Guide

output explicitly specifying -o STDOUT as output or to the standard error specifying -o
STDERR.

OPTION -v

The last switch is ‘-v’, which can be used to print version information.

$ scriba -v

ScriptBasic v2.0
Variation >>STANDARD<< build 1
Magic value 859010868

Node size is 16
Extension interface version is 11
Compilation: Jul 23 2002 22:24:56
Executable: T:\ScriptBasic\bin\scriba.exe

When you use this switch ScriptBasic does not execute any program. Instead it prints
out information on itself and stops. The information lines printed are:

ScriptBasic v2.0 It is ScriptBasic version 2.0

Variation >>STANDARD<< build 1 The variation is STANDARD and this code is based
on the build 1 source version. The build number is a sub version. Therefore you may
think of it as this is version v2.0.1

Note that the actual version and build may and most probably is different from the
example presented here. This is a printout of the version by the time this part of the
documentation was written.

Magic value 859010868 This is a magic code calculated from the date of the compila-
tion of ScriptBasic. Currently it is not used.

Node size is 16 The size of a node in bytes of the internal format. When a basic
program is compiled and saved using the option ‘-o’ several "nodes" are saved. On
different platforms the size of the node is different. This is actually the size of the C
struct defined in ‘build.c’

This is usually 16bytes on 32 bit machines. If you get a higher value on a 32bit-machine
when you compile ScriptBasic from source check your compiler for alignment options.

Tru64 UNIX compiler creates 24bytes nodes.

If you do not understand all this node size stuff, just forget about it.

Extension interface version is 11 The interface version that ScriptBasic currently
uses to load external modules. The external modules are dynamic libraries that can be
loaded during run time. On UNIX they usually have the extension ‘.so’. On Windows
they have the extension ‘.dll’. The interface version should not be confused with the
version of ScriptBasic or the version of a module. This is the version of the interface
that ScriptBasic and the module should agree.

Compilation: Jul 23 2002 22:24:56 The time when the executable was compiled
CET.

Chapter 2: Using ScriptBasic 9

The actual magic value and the compilation date will be different when you try the
option ‘-v’ on the released version of ScriptBasic, because this documentation was created
using a pre-release version of ScriptBasic v2.0b1.

Note that any command line option should be specified before the name of the BASIC
program. Any command line option or argument specified following the name of the file
containing the basic program in text or binary format will be passed to the basic program
itself. The basic program can use the function COMMAND() to access this part of the command
line.

2.2 Running CGI programs

Although this topic should have been out of the scope of this documentation it is de-
scribed here in detail because of its importance. Several users want to run ScriptBasic
programs as CGI scripts.

Running CGI programs is just the same as running command line programs if you are
experienced configuring your web server. The major difference is that it is the web server
that starts the command line program and not the shell (or command.exe).

Under UNIX you can start a ScriptBasic program the same way as any other CGI scripts.
The very first line of BASIC program should be

#! /usr/bin/scriba

assuming that the executable code is called scriba and it is placed in the directory
/usr/bin. The text file containing the code should also be executable for the user who runs
the CGI scripts. This user is usually called nobody. You may say

$ chmod a+x hello.bas

to give all users execute permission. This may impose security questions that we do not
discuss here. You should really know what you are doing.

On Windows NT using Internet Information Server the situation is different. Here you
have to associate the extension with the executable of ScriptBasic. Note that this is not
the same association as the one that allows the explorer to run the program when you
double click on it. You have to configure the association in the Internet Service Manager
configuration program.

You can also execute BASIC programs in the Eszter SB Application Engine to generate
web applications. In this case the Eszter SB Application Engine has to be started from the
command line or as a daemon under UNIX or installed as a service under Windows NT. The
BASIC programs are executed inside the engine without starting a new process unlike in
CGI and thus execution is faster. Nevertheless the programs on the BASIC programming
level feel as if they were CGI programs, thus CGI programs can be executed this way
without any modification.

2.3 Writing CGI programs

There are two ways to write CGI programs in ScriptBasic. The old way is just like in
any other language: the basic program can access the environment, the standard input and

10 ScriptBasic Users Guide

standard output. This is all needed to write a CGI program, decode the CGI parameters
and create the http response.

The better way is to use the CGI module delivered with ScriptBasic that automati-
cally handles CGI input, CGI environment variables, creates the uploaded files and even
supports some security settings. For more details on the CGI module read the separate
documentation of the module named CGI.

Chapter 3: Installation Instructions 11

3 Installation Instructions

Installation of ScriptBasic is easy. Although there is no SETUP.EXE to install the program,
it does not require you to be rocket scientists to install under Windows NT. Under Linux
you can use the Debian or the RedHat packages to install the program. Under other unices
you should build the and install the program from source that should be as complex and
sophisticated as typing make install.

3.1 Installation under Windows

To install the software on Windows is quite easy. Extract the ZIP file into a temporary
directory and start the executable ‘SETUP.EXE’.

Note that another file named ‘SBCAB.BIN’ should be in the same directory where the
program ‘SETUP.EXE’ is. This file ‘SBCAB.BIN’ contains the files in a compressed archive
that the program ‘SETUP.EXE’ reads and uses to install ScriptBasic.

After starting ‘SETUP.EXE’ all you have to do is to specify the directory where you want
to install ScriptBasic, and ‘SETUP.EXE’ does the rest for you.

After you have installed ScritpBasic you can safely delete the files ‘SETUP.EXE’ and
‘SBCAB.BIN’ from the temporary directory. Do not delete ‘SETUP.EXE’ that was copied
into the installation directory. This is needed to uninstall ScriptBasic in case you want to
uninstall it ever.

3.1.1 Installation under Windows from source

To install from sources you have to compile ScriptBasic first. The process of compila-
tion under Windows operating system is defined in the Developers Guide. Note that the
Developers Guide may not be up to date lacking this chapter.

ScriptBasic does not require installation to use the basic features. Installation and
configuration is required to enable ScriptBasic to use advanced features like, loading external
modules.

After compilation you can run the BASIC program ‘install.sb’ using the freshly com-
piled executable ‘scriba.exe’. This program will partially install ScriptBasic into a direc-
tory. To start the program use the command file ‘install.cmd’.

After you have done this you may want to alter the system PATH to include the directory
where the executable is. In case you use the default installation directory this is

C:\ScriptBasic\bin

On Windows 2000 to do it click on the start button, control panel, system. Choose the
tab Advanced and then the middle button with the text Environment Variables...

Select the variable Path either from User variables of from System variables. Press the
button Edit..., press "Home" to get to the start of the line and type the directory of
the ScriptBasic binaries, like C:\ScriptBasic\bin;. Do not delete any of the characters
already in the edit box, and do not forget the separating semicolon.

You can find a file ‘scriba.conf’ in this directory. This is the configuration file of
ScriptBasic. Do NOT try to edit this file using notepad. This is a binary format file created

12 ScriptBasic Users Guide

using the ScriptBasic command line option ‘-k’. If you want to change any configuration
options edit the file ‘scriba.conf.lsp’ and generate the new ‘scriba.conf’ file typing the
command line:

C:\ScriptBasic\bin> scriba -k scriba.conf.lsp

When ScriptBasic starts it searches for the configuration file in the same directory where
the executable is (this is a Windows only feature). If you want to store the configuration
file in a different directory then use the registry editor and set the key

HKEY_LOCAL_MACHINE\Software\ScriptBasic\config

to hold the full path file name of the configuration file (not the text version but the
converted binary).

After the successful installation run some test programs.

3.2 Installation under Linux

To install ScriptBasic under Debian Linux is as simple as typing

dpkg --install scriba-v2.0b1-1_i386.deb

If you happen to install ScriptBasic on a RedHat Linux then you can download the RPM
version of the program and say

rpm -i scriba-2.0b1-1.i386.rpm

This will install and configure ScriptBasic form most of the systems. In case the direc-
tory structure of the standard installation does not fit your needs then you can edit the
configuration file scriba.conf.unix.lsp and convert it to binary version using the command
line:

#/usr/bin/scriba -k scriba.conf.unix.lsp

This is the default configuration file that ScriptBasic reads and all other directories and
locations are taken from this file.

In case you want to create a version of ScriptBasic that links some external modules
statically or want to play around with the source then you have to recompile the source.
Because this is the standard installation mode for any operating system that is not Windows
nor Linux, read on in the next section how to do it.

3.3 Installation under other Unices

On Windows NT and Linux (Debian or RedHat) the installation is simple. On other
operating system the installation is a bit more sophisticated. You have to extract the
tar.gz source file into a directory get super-user privileges issuing the command su and
have to type:

./setup

If you happen to need it try it now. If you face issues, then please consult the developers
guide that details how to compile ScriptBasic sources.

Chapter 3: Installation Instructions 13

3.4 Configuration

To reach advanced features, like using system include files from predefined directories
or using dynamic modules you have to create a configuration file. This configuration file
is probably different for most installation and reflects the directory structure, networking
environment and other specialties of your setup.

The format of the configuration file is binary. This is to speed up configuration in-
formation reading. To create this binary format, you have to edit the text format of the
configuration file usually named ‘scriba.conf.lsp’ and have to convert it to binary format
using the command line

scriba -k scriba.conf.lsp

The ScriptBasic executable using the option ‘-D’ dumps binary configuration files into
text format. Note that this dump program will not restore the comments of the original
configuration file nor the line breaks or spaces (except those in strings).

The format of the text file version of the configuration information is simple. It contains
the keys and the corresponding values separated by one or more spaces and new lines.
Usually a key and the assigned value are written on a line. Lines starting with the character
; are comment.

The values can be integer numbers, real numbers, strings and sub-configurations. Strings
can either be single line started and terminated by a single " character or multi-line strings
starting and ending with three """ characters, just like in the language ScriptBasic.

Sub-configurations start with the character (and are closed with the character). The
lists between the parentheses are keys and corresponding values.

[Former versions of ScriptBasic preceding version 2.0.0 did not allow a configuration to
have empty sub configuration. Version 2.0.0 and later allow such a configuration part. This
may happen in case the configuration file is edited and all the keys in a subconfiguration is
commented out. This was a bug that was hard to spot. The later version executed a clean
up procedure when reading the text version of the configuration file during configuration
compilation and removes the sub tree.]

The keywords of the current version are:

dll defines the extension used for dynamic load libraries. This extension is used when
a module is loaded and full path file name is not specified. If there are more than one
extension specified only the first one is used.

The string defined in this key is appended to the file name when ScriptBasic is loading
a module. ScriptBasic does NOT insert the dot before the extension; therefore the key
value should contain it. Thus the correct configuration is

dll ".dll"

module defines the directory for dynamically loadable modules. You should define the
full path to the dynamic load libraries. In the path name you can use forward or back
slashes.

ScriptBasic does not insert a slash between the file name and the directory path, there-
fore the key value should contain the trailing slash.

14 ScriptBasic Users Guide

If there are more than one values defined for this key ScriptBasic will search for the
module in each directory defined in the order they are defined. The search finishes
when the module is found and successfully loaded or if there are no more directories.

include defines the directory for system or module-include files. These files are in-
cluded in the include statement specifying the file name as bare word without double
quotes. You should define the full path to the files. In the path name you can use
forward or back slashes.

ScriptBasic does not insert a slash between the file name and the directory path, there-
fore the key value should contain the trailing slash.

If there are more than one values defined for this key ScriptBasic will search for the
module in each directory defined in the order they are defined. The search finishes
when the module is found and successfully loaded or if there are no more directories.

maxstep defines the number of instructions to be executed before the program stops
with error. This can be useful to limit CGI programs to run too long and consume
too much memory and processor. That can happen either by error or because your
programmer (customer in case you provide web hosting service) wants to degrade your
service.

Note that this limit is compared against the number of steps, which is more than the
number of lines. For example the line

a = b+3

executed by two steps: an addition and an assignment command.

If the value of this parameter is zero or if the parameter is not defined in the configu-
ration file no limit is effective.

maxlocalstep defines the number of instructions allowed to be executed inside a func-
tion or subroutine before the program stops with error. This is limit is similar to
maxstep and can serve the same purpose. This may help you fine tune program be-
havior. Usually setting maxstep is enough.

If the value of this parameter is zero or if the parameter is not defined in the configu-
ration file no limit is effective.

maxlevel defines the maximal level of recursive call deepness. Programs usually get
into infinite loop because of incorrect recursive loop. This value can limit the maximum
number of function calls nested. The binary version of ScriptBasic is shipped with a
value appropriately set for this value. If you compile the program from source the
installation process sets this value.

If the value of this parameter is zero or if the parameter is not defined in the configu-
ration file no limit is effective.

maxmem defines the maximum number of bytes that a basic program is allowed to use
for its variables. The actual memory allocated by the process or thread running the
interpreter may exceed this value because memory for the reader, lexical analyzer,
syntax analyzer, code builder and external modules are not limited. This limits only
the memory allocated for the ScriptBasic variables.

If this value is zero or is missing then there is no limit except the limits of the operating
system and the hardware.

Chapter 3: Installation Instructions 15

preload defines the external modules that are always to be loaded before starting the
basic program. There can be more than one modules defined. In this case the modules
are loaded in the order they are specified.
The name of the module should be specified the same way as in the ScriptBasic state-
ment declare sub: either with full path including file extension or without path and
extension. If only the name of the module is specified the module directories are
searched by ScriptBasic to load the module defined by the configuration key module.
cache defines the directory where the program cache is stored. This should be an
existing directory name including the final \ or /. At each run the interpreter will
check in this directory if the file was already compiled and a precompiled version is
used if that is newer than the file.
preproc defines the external and internal preprocessors.

extensions Defines the extensions that external preprocessors are assigned to.
Each key has to mach an extension and the value string has to be the symbolic
name of the external preprocessor assigned to that extension.
external Each key in the sub-configuration is the symbolic name of an external
preprocessor and the sub-configuration assigned to that key defines the directory
where to store the result of the preprocessor and the command to start the pre-
processor. Note that a space and the source file name are automatically appended
after the command line.
internal Defines internal preprocessors. Each key in this list defines the name
of the preprocessor and the value defines the DLL or SO file that implements the
internal preprocessor. The key name should be used following the option ‘-i’ or
after the BASIC source program command USE.

ScriptBasic ignores all lines containing a key that it does not understand. This is dan-
gerous on one hand because it makes typing errors less recognizable. On the other hand
it allows different variations share common configuration file. The external modules imple-
mented as dynamic load library functions can also access any configuration data.

An example configuration file from a Windows NT installation:
; scriba.conf
; ScriptBasic sample configuration file
;
; Note that this configuration file format is from v2.0b1 or later and has to be compiled
; to internal binary format before starting ScriptBasic

; this is the extension of the dynamic load libraries on this system
dll ".dll"

; where the modules are to be loaded from
module "d:\\MyProjects\\sb\\modules\\"
module "d:\\MyProjects\\sb\\sysmodules\\"
module "c:\\ScriptBasic\\modules\\"

; where to search system and module include files
; trailing / or \\ is needed

16 ScriptBasic Users Guide

include "d:\\MyProjects\\sb\\source\\include\\"
include "c:\\ScriptBasic\\source\\include\\"

;
; define external preprocessors
;
preproc (
; extensions that preprocessors are to be applied on
extensions (

; here the key is the extension and the value is the symbolic name of the external
; preprocessor

heb "heb"
)

; the external preprocessors
external (
heb (
executable "D:\\MyProjects\\sb\\Release\\scriba.exe d:\\MyProjects\\sb\\source\\heber.bas"
directory "d:\\MyProjects\\sb\\hebtemp\\"

)
)

)

;
; LIMIT VALUES TO STOP INIFINITE LOOP
;

; the maximal number of steps allowed for a program to run
; comment it out or set to zero to have no limit
maxstep 30000

; the maximal number of steps allowed for a program to run
; inside a function.
; comment it out or set to zero to have no limit
maxlocalstep 0

; the maximal number of recursive function call deepness
; essentially this is the "stack" size
maxlevel 300

; the maximal memory in bytes that a basic program is allowed to use
; for its variables
maxmem 1000000

;

Chapter 3: Installation Instructions 17

; ScriptBasic loads the modules before starting the code
; in the order they are specified here
;
;preload "ext_trial"

;
; This is the directory where we store the compiled code
; to automatically avoid recompilation
;
cache "d:\\MyProjects\\sb\\cache\\"

cgi (
;

; These are the keys used by the CGI module
;
debugfile "d:\\MyProjects\\sb\\cgidebug.txt"
)

Although Windows NT programs are usually configured using the registry or active
directory services ScriptBasic uses a text file to ease and maintain compatibility with UNIX
versions.

To ease the compatibility even more the file names are allowed to use the UNIX style
forward slash / as directory separator character.

When the program starts one of its first action is to search the configuration file. The
search for the configuration file is different on Windows NT and under UNIX operating
system.

3.5 Configuration file location under Windows NT

Win32 installation first tries to open the file ‘scriba.conf’ if it exists in the same
directory as the executable file. This is a convenient place to store the configuration file
and does not require registry editing to install ScriptBasic. This is also the ultimate place
for CD ROM products utilizing ScriptBasic that need running instantaneously without any
installation.

If the file ‘scriba.conf’ does not exist in the directory of the executable the configu-
ration manager tries to open the file, which is specified in the string value, named config
under the registry key HKEY_LOCAL_MACHINE\Software\ScriptBasic. If there is no name
specified in this registry value ScriptBasic tries to locate the configuration file ‘scriba.ini’
in the system directory. The system directory is determined reading the environment vari-
able windir. If this environment variable does not exits ScriptBasic tries systemroot. It
should usually exist on normal Windows installation. If ScriptBasic can not find even this
environment variable it tries ‘C:\WINDOWS’ as final try. If no configuration file can be found
ScriptBasic tries to execute the program without configuration information.

18 ScriptBasic Users Guide

Note that if for example ‘C:\WINNT\scriba.ini’ exists and is valid, but the registry
defines a different and a non-existent or invalid file ScriptBasic will fail to load the config-
uration file. It will try to read the file specified in the registry. The other file options are
searched when the registry key does not exist or is empty.

If the command line uses the option ‘-f’ then the argument of the option is used as
configuration file and this overrides all configuration search algorithm. If the file specified
in the option ‘-f’ does not exists then ScriptBasic runs without configuration.

3.6 Configuration file location under UNIX

UNIX installations try to locate the configuration file from the environment variable
SCRIBACONF. This environment variable should contain the configuration file name. If
this environment variable does not exist ScriptBasic tries to load the configuration data
from the file ‘/etc/scriba/basic.conf’.

Note that if the file defined in the environment variable SCRIBACONF is non-existent
or is invalid ScriptBasic does not try to load the configuration from the default configuration
file.

If you can not configure ScriptBasic configuration file name using environment variables
or the system registry under Windows NT you can modify the source file ‘scriba.c’. You
have to alter the function scriba_LoadConfiguration.

If the command line uses the option ‘-f’ then the argument of the option is used as
configuration file and this overrides all configuration search algorithm. If the file specified
in the option ‘-f’ does not exists then ScriptBasic runs without configuration.

3.7 Overriding the default configuration file

On both UNIX and Windows NT you can specify a configuration file on the command
line. If you specify the file name of the configuration file on the command line following the
option ‘-f’ then the specified configuration file is going to be used instead of the default.

3.8 Trouble shooting installation

Although installation is quite simple there can be some pitfalls that we and our users
have experienced during installing ScriptBasic. To help you we list the possible error.

Symptom Some programs do not run, but claim that the binary version was created
for a different build of ScriptBasic.
Cause and solution There is binary cache file for the programs, which is younger than
the source of the basic programs but was created by a previous installation. Delete the
content of the cache directory.
Symptom Apache (or IIS) claims internal server error when running CGI scripts.
Cause and solution There can be several causes. The most probable ones:

You forgot to start the program using #! /usr/bin/scriba

The basic program is not executable by nobody (or the web daemon user)

Chapter 3: Installation Instructions 19

The code of ScriptBasic ‘/usr/bin/scriba’ is owned by root and is not executable
by the user nobody.
The configuration file contains invalid data.
The file names in the configuration miss the trailing /

The Windows NT registry string HKLM\Software\ScriptBasic\config is missing or
points to an invalid configuration file.

20 ScriptBasic Users Guide

Chapter 4: Code caching 21

4 Code caching

The interpreter has to do several things before actually starting the BASIC code. It has
to read the file, split it into tokens, analyze the program and build the internal executable
format. This takes a lot of time especially for programs longer than a few lines. This can
be skipped if the code built up is saved into a file and the file is loaded and run without the
recompilation.

To save the binary format file after the BASIC program was analyzed and build the ‘-o’
option can be used. To load and run the code the binary file can be used instead of the
text file containing the BASIC code. The interpreter automatically recognizes the binary
format and does not try to interpret it as BASIC program source. To help the interpreter
you can also supply the option ‘-b’ on the command-line that tells the interpreter to believe
without checking that the file is binary format of the basic program. This is one solution
to speed up execution of the ScriptBasic programs and to avoid recompilation of the code
several times. The other method is caching.

The configuration file (see section See 〈undefined〉 [Installation Instructions], page 〈un-
defined〉) may contain a value for the key cache. The value for this key should specify a
readily existing directory (do not forget the trailing / or \) where the BASIC interpreter
can store the binary format of the code. If there is a valid value specified as cache directory
the interpreter checks the cache for an already existing binary format file and if that is
newer than the BASIC source it neglects the BASIC source and loads the binary format
from the cache.

On the other hand whenever a BASIC source code was analyzed and built the resulting
binary code is saved into the cache. This method is transparent for the user and significantly
speeds up program execution especially for CGI programs that run many times.

To avoid cache using you can use the command-line option -n.

Caching has some limitation that can result unwanted behavior. Before switching on
program code cache, please read the following sections that describe the shortages and the
security issues that should be considered.

4.1 How cache file name is calculated

The cache file name is calculated from the source file name. The applied algorithm
calculated the MD5 digest of the source file name and converts it to a 32-character string.
The digest itself is 16 bytes long. The conversion to ASCII takes the 32 half-bytes. Each
half byte can have a value from zero to 15. Zero is converted to A, 1 to B and so on. This
method was introduced in ScriptBasic v1.0build18 and eliminates some shortages of the
algorithm of former versions.

4.2 Cache handling shortages

The cache directory contains the cached binary format program codes for the BASIC
programs executed. For each BASIC program a new file is generated when the BASIC
source code is analyzed and built.

22 ScriptBasic Users Guide

The file name for the cache file is calculated using the file name. This file name includes
the full path to the file under Windows NT but is the bare file name as supplied on the
command line under UNIX.

This means that if you have two different programs named ‘hello.bas’ in two different
directories and you run one after the other from their directory issuing the command line
under UNIX

scriba hello.bas

the second execution will erroneously think that the cache file created when the first one
was running belong to this program and will execute the binary code.

On the other hand if you execute the program ‘hello.bas’ from two different directories
and the supplied paths are different the caching mechanism will not realize that the two
execution refer to the same file.

Also note that cache handling does not compare the modification time of the files that
basic program includes. If the program itself does not change, but an included file did the
caching it will still run the older version.

Caching usually works and in case you experience mysterious problems you can try to
avoid caching using the option ‘-n’ or commenting out the configuration line cache. Web
servers usually specify full path to the executed code and in that case cache file name
conversion is correct. Especially Apache does start CGI programs passing the full path to
ScriptBasic as argument and thus caching works well with this web server.

It is recommended to switch the caching totally off during development and switch on
at the start of the test phase. On test environment delete the cache frequently whenever
you experience mysterious errors that you think you have already corrected.

4.3 Cache security

Caching is great, but there are some security issues that you have to understand before
allowing caching. The ScriptBasic interpreter is usually available to all users in an instal-
lation. The cache directory should be created for the interpreter and the security of the
directory should be set so that each user can read and write the directory. This may impose
security risks in a shared environment.

Chapter 5: Compiling BASIC programs 23

5 Compiling BASIC programs

BASIC programs can be compiled to a tokenized form, to C code or to an executable
file.

The tokenized format is the internal format of ScriptBasic and this is always generated
before executing a BASIC program. To speed up execution ScriptBasic is capable saving
this code into cache files automatically. However in some situation you may want to save
this format into a separate file. To do this you have to issue the command

scriba -no myprogram.bbf myprogram.bas

This will save the code into the file ‘myprogram.bbf’. After having this file you can
execute the BASIC program issuing the command

$ scriba -b myprogram.bbf

or

$ scriba myprogram.bbf

On UNIX you can make the compiled file to be executable setting the permissions
$ chmod u+x myprogram.bbf

and after that you can just write:
$./myprogram.bbf

Please note that binary format files may not be executed on different versions or builds
of ScriptBasic and are not movable from one platform to another. You may be lucky to
execute Windows NT and Linux version bbf files on the other platform, but this is not a
guaranteed feature. You surely can not run the binary format generated on a DEC OSF/1
(ooops, sorry Tru64 UNIX) on a 32 bit system.

5.1 Binary format of the BASIC code

In this section we describe some features of the binary format of the BASIC programs
saved by ScriptBasic automatically into the cache directory or to a file using the option ‘-o’.
There is absolutely no need to know or understand the binary format of ScriptBasic for those
who want to program in ScriptBasic. However advanced users may want to perform some
modification on binary format BASIC programs, like changing the interpreter location in
the start line. For those this section describes the details.

The binary format is binary. It starts with some constant leading code to ensure that no
erroneous execution starts and to avoid memory corruption. This leading code helps Script-
Basic to recognize the binary format even if the interpreter was started without specifying
the option ‘-b’.

The binary format may, however start with a textual line specifying the interpreter.
This is needed to make the binary format file executable on UNIX, for example to run a
CGI program. This line is interpreted by the UNIX operating system and is ignored by

24 ScriptBasic Users Guide

the interpreter. Because this line has no meaning on Windows NT the line HAS TO be
terminated by a line feed and not CR/LF. You need not worry about it, because this is
created this way on Windows NT as well as on UNIX. This first line is copied from the
source BAS file when the binary format is created.

You may want to change this line when you want to run the code on a machine having
the interpreter located at a different location. To do this you can use the following sample
ScriptBasic code:

cmdlin = command()
split cmdlin by " " to FileName,Interpreter
open FileName for input as 1

binmode 1
File$ = input(lof(1),1)
close 1
if left(File$,1) = "#" then
i = 1
while i < len(File$) and mid(File$,i,1) <> "\n"
i = i+1

wend
if mid(File$,i,1) = "\n" then
File$ = "#!" & Interpreter & mid(File$,i,len(File$))

end if

open FileName for output as 1
binmode 1

print#1,File$
close 1

end if

This leading line is optional.
The first byte of the binary code (following the optional command line) is the ASCII

number of the size of a long on the actual platform. This is currently 4 on Linux and
Windows NT, Windows 95/8 and it is 8 for Tru64 UNIX.

This is followed a magic code. This is 0x1A534142. On DOS platforms this is printed
as BAS^Z and prevents dumping the code to the screen if one attempts. This magic code is
saved as a long. This means that the order of the bytes follows the order of the bytes in
a long in memory on the machine the code was saved. This is followed by six long values.
These are

VersionHigh the high number of the ScriptBasic version
VersionLow the low number of the ScriptBasic version
MyVersionHigh the high number of the variation version
MyVersionLow the low number of the variation version
Build the build number of the version

Chapter 5: Compiling BASIC programs 25

Date coded date

The following eight bytes contain the name of the variation that created the binary code.
Because some variations do not differ in binary format from the STANDARD variation they
create binary file saying it being STANDARD.

To successfully load a binary format file to run in ScriptBasic the long size, the magic
code, version information including the build and the variation string should match. Date
may be different.

Following this header the real information of the executable code is placed. The following
four long numbers present in order the

Number of global variables
The number of nodes in the code
The start node serial number
The size of the table containing the constant strings

Following this the nodes come one after the other. ScriptBasic prints the size of a single
node in bytes when the option ‘-v’ is used. This is usually 16bytes on 32bit systems and
24bytes on 64bit systems. If you get smaller node size printed then you will face alignment
problems. If you get bigger node check your compiler options. ScriptBasic was not tested
on 128bit systems up to now.

The string table follows the nodes. This contains all the strings zero character terminated
that present in the code. There is at least a zero valued byte in the string table even if the
program does not contain any string constant.

There can be arbitrary data following the string table, they are ignored.

26 ScriptBasic Users Guide

Chapter 6: Compiling BASIC program to EXE 27

6 Compiling BASIC program to EXE

ScriptBasic program can be "compiled" to executable directly under Windows and Linux.
To do this you should use the option ‘-E’ and you should also specify an output file using
the option ‘-o’. For example:

scriba -Eo queens.exe queens.bas

will generate an executable file ‘queens.exe’ that will run the BASIC program
‘queens.bas’. When using this option the ScriptBasic interpreter will ignore any cached
precompiled code and will compile the BASIC program from source code fresh.

Note that this kind of compilation works only on Linux and Windows and the generated
file is operating system specific, and can not run on any other operating system. Beta test
users reported that the feature works on FreeBSD and on Solaris, but the developers lacking
test resources can not guarantee this.

Although the ScriptBasic interpreter compiled and installed on other operating system
(above Windows and Linux) will accept these options and will generate a file it may not be
usable. This feature uses the specialties of the executable format of Windows and Linux.

The compilation to executable is not a real compilation, in the sense that the program
is not compiled into real machine code, and thus do not expect it running faster or using
less memory. This methodology only creates the intermediary code that the ScriptBasic
execution module uses and puts it into an executable file that also contains the interpreter.
The final executable will contain the binary code of the BASIC program and will execute
the same way as it would execute running the original file.

In the rest of this chapter we detail how the BASIC to EXE direct compilation works.

6.1 BASIC to EXE compilation technical details

Under Windows and Linux an executable file is loaded into the system without caring
too much the length of the file. This is the feature that let viruses attach themselves
to executable file under Windows. When ScriptBasic is started with the option ‘-E’ the
interpreter makes a copy of the executable of itself and appends the compiled intermediate
code after the executable code. Finally it prints the eleven characters string SCRIPTBASIC
and a four byte file byte offset pointing after the end of the executable part of the file.

When the interpreter starts first it check if the last 15 bytes start with the string
SCRIPTBASIC. If it does not then the interpreter continues in normal operation process-
ing the command line parameters. However if the last 15 bytes start with the string
SCRIPTBASIC then the executable is a ScriptBasic generated executable and it loads the
code from the executable starting at the byte offset specified by the last four bytes of the
file.

28 ScriptBasic Users Guide

Chapter 7: Compiling BASIC programs to C 29

7 Compiling BASIC programs to C

Although ScriptBasic is an interpreted language it is possible to create stand-alone ex-
ecutables from BASIC programs on any platform where ScriptBasic can run. To get an
executable standalone program first you have to compile your BASIC program to C and
the C code has to be compiled to get the executable. (Unless you use the option ‘-E’ that
can generate executable directly.)

To get the C version of the BASIC program you should use the command line option C,
for example:

scriba -nCo myprogram.c myprogram.bas

This command will compile the BASIC program ‘myprogram.bas’ and save the code in
C language format into the text file ‘myprogram.c’. You have to compile this file using a C
compiler and link it with the library files.

When using this option the ScriptBasic interpreter will ignore any cached precompiled
code and will compile the BASIC program from source code fresh. When compiling BASIC
to C do not forget to specify the output file using the option ‘-o’. Without this option
ScriptBasic does not perform the compilation, there is no default file name for the output.

Note that this is not a real compilation. This methodology only creates the intermediary
code that the ScriptBasic execution module uses and puts it into a C program. The final
executable will contain the binary code of the BASIC program and will execute the same
way as it would execute running the original file.

The achievements you can get compiling the code and generating standalone executable
file are:

Faster startup, because the executable does not need to compile or even load the BASIC
program, but can execute it immediately. This is a bit even faster than the EXE file
generated by directly compiled from BASIC.
Simplified setup of your program, because you only have to deliver a standalone exe to
your users.
You can hide that your program was written in BASIC and can a bit protect your
intellectual property.

Also note that you have to have a properly created configuration file and the dll or so
modules on the system your executable is going to run in case you need some features that
rely on configuration settings.

You may also consider recompiling the ScriptBasic interpreter to statically link some of
the external modules that your BASIC program uses.

7.1 Compilation under Windows NT

Currently Visual C command line cl and Borland command line bcc32 compilers are
supported.

There are two command files that you can find in the bin directory under the installation
directory. These are ‘bascl.cmd’ to automate the compilation using the Microsoft compiler
and ‘basbcc32’ to automate the compilation using the Borland compiler.

30 ScriptBasic Users Guide

The ‘bin’ directory also contains the files ‘libscriba.lib’ and ‘libscriba.obj’
to be used by the Microsoft compiler and linker, as well as ‘libscriba_omg.lib’ and
‘libscriba_omg.obj’ to be used by the Borland compiler and linker.

The content of the file ‘bascl.cmd’:
scriba -n -Co %1.c %1.bas
cl /Ox /GA6s /DWIN32 /MT /nologo /W0 /c /Fo%1.obj %1.c
cl /Ox /GA6s /DWIN32 /MT /nologo /W0 /Fe%1.exe %1.obj \ScriptBasic\bin\libscriba.obj \ScriptBasic\bin\libscriba.lib ws2_32.lib advapi32.lib

The content of the file ‘bascbcc32.cmd’:
scriba -n -Co %1.c %1.bas
bcc32 -5 -c -o%1.obj %1.c
bcc32 %1.obj \ScriptBasic\bin\libscriba_omg.obj \ScriptBasic\bin\libscriba_omg.lib

This is the content as the files are installed. In case you have more than one disk, or the
installation directory is not ‘\ScriptBasic’ you may need to edit the file you intend to use
replacing the \ScriptBasic\bin\ with the actual directory where the object and library
files are. It is recommended that you also edit the disk drive letter into the full path so
that the command script works in case the actual working directory is on a different disk
than the one where ScriptBasic is installed.

The reason that there are two different object and library files for the two different
compilers is that these compilers support different object and library format. Microsoft
supports the COFF format, while the free compiler available from Borland supports only
OMG format. Although there is a coff2omg converter available from Borland that works
only for library files that are DLL wrapper libraries and not for object files or for library
files containing actual code.

These object and the library files contain the same code with the exception that they
were created using different compilers.

7.2 Compilation under UNIX

The UNIX installation puts ‘libscriba.a’ in the directory ‘/usr/local/lib’. This
means that you can use the gcc option ‘-l’ to specify this library. Therefore the command
line to compile the generated C file is:

$ gcc -o myprogram myprogram.c -lm -ldl -lpthread -lscriba

This will compile the ScriptBasic generated ‘myprogram.c’ to the executable
‘myprogram’.

Chapter 8: Compiling ScriptBasic with modules 31

8 Compiling ScriptBasic with modules

This section is rather technical and not for the BASIC programmer. This section details
how to compile the ScriptBasic interpreter so that it already includes some of the external
modules. This requires knowledge how to compile C programs and some programming
practice of C is also helpful. If you just want to program in BASIC do not read this section
and get distracted by this, skip to the next section.

ScriptBasic supports external modules that are usually delivered as DLL or SO files and
using them do not require the recompilation of the interpreter. However in some cases there
is a need to compile the ScriptBasic interpreter and some of the external modules into a
single executable image. This may be the case when you deliver a solution to a customer and
want to build a special version of the interpreter lessening the possibility of misconfiguration
or you just simply want to protect your intellectual property implemented in the external
module and do not want to deliver it as DLL or SO file. Linking some modules static into
the interpreter also provides some speed improvement.

To link some modules into the interpreter you have to create a file named ‘lmt_XXX.def’.
This file should list the names of the modules that you want to statically link. There can be
empty lines and lines starting with the character # as comment. You can use the characters
XXX (not necessarily three character, but try to avoid the word httpd and none as we have
already have those) to distinguish your compilation.

After the file is created issue the command:

perl lmt_make.pl lmt_XXX.def

This will create the file lmt_XXX.c.

THIS IS CHANGED TOTALLY FOR v1.0BUILD30 and ABOVE. TO BE REWRIT-
TEN ALTER. ACTUALLY ALL THESE THINGS SHOULD GO INTO THE DEVELOP-
ERS GUIDE!!

If you look into the file ‘lmt_XXX.c’ you will see that the module tables are referenced
by the global table StaticallyLinkedModules. You have to give the name of the function as
a string as well as the function as well. This table will be searched by ScriptBasic when
the module is "loaded". When a module is loaded from a DLL or SO file such a table is
provided by the operating system and is searched by operating system functions.

The next step is to compile the modules for the static linking. This is a bit different
from compiling for DLL or SO file as result. When the module is compiled to be linked into
a DLL or SO file all interface functions should be exported so that the operating system
can access their name and entry point. When the module is compiled to be linked together
with the interpreter all functions should be static. If we compiled the module the same way
as for targeting DLL or SO file we were not able to link more than one module into the
interpreter because the linker would complain about multiple defined versmodu and other
functions that are defined in each module.

To compile a module for static linking you should use the compilation option
‘-DSTATIC_LINK=1’ that tells the C preprocessor to define some macros differently
than normal. If you look into the ‘Makefile’ or ‘Makefile.nt’ you will see that these
compilation options are already there and all module interface files can be compiled using
the tool make to its static version which is named ‘s_module.o[bj]’. The prefix s_ is

32 ScriptBasic Users Guide

used to denote that this version of the object file was compiled from the same C source
using the options that are required for static linking of the interpreter.

Choose an appropriate executable name XXX for your version and edit the Makefile.
Create the rule that compiles your version. Your version will eventually use ‘lmt_XXX.c’
and ‘lmt_XXX.o[bj]’ instead of ‘lmt_none.*’ and the executable will depend on the source
and should be linked with the compiled object files and libraries of the modules. As an
example you can look at the variation sbhttpd that includes the CGI and the MT module
linked into it.

Type
make XXX

And you should get your executable.

Chapter 9: General Language Format 33

9 General Language Format

This chapter defines the language format, how to program in BASIC. The later chapters
define in detail the functions available in the interpreter.

9.1 Hello World

ScriptBasic is a BASIC language. As such it is line oriented. The commands follow each
other in the source file lines. The simplest example, the usual "hello word" example is a
one-liner in basic:

print "HELLO WORLD"

You can write the commands upper or lower case or even mixed case. Therefore the
following lines are equivalent:

Print "HELLO WORLD"
print "HELLO WORLD"
PRINT "HELLO WORLD"
PrInt "HELLO WORLD"

9.2 Strings

Strings are most frequently used entities in a BASIC program. As you could already see
in the very first example strings are quoted with double quote. But they can be more than
just characters between double quotes. String as a type is a basic data type of ScriptBasic.
A variable having string value contains several bytes. There is no length limit for a string
other than the virtual memory of the machine. A string may contain character of any code
even characters that have the ASCII code zero. In other words a string is a collection of
bytes of certain length. You can treat strings as arbitrary length of binary data if you need.

Strings can be concatenated, you can cut off a part of a string and several other functions
and operators can handle strings. ScriptBasic automatically allocates the space required to
store the string and releases the unused space when the string is not needed anymore. For
more information on string handling operators and functions see the chapter See 〈undefined〉
[Command reference], page 〈undefined〉.

The simplest form of a string is a strings constant appearing in the source file. This is
the form like in the example

print "Hello Word\n"

Here you can note that there is a special character at the end of the string denoted by
two characters. This may be familiar from other languages. The characters \n mean a new
line character in a readable form. The \ (backslash) character is the escape character in
a string altering the meaning of the character that follows it. The special characters that
ScriptBasic handles are:

\t is converted to a tabulator character.
\n is converted to a new line character.
\r is converted to a carriage return character.

34 ScriptBasic Users Guide

\" is converted to a double quote character. This is the way to include a double quote
character into the string.
\0-9 is converted to ASCII code, see details later.

All other characters remain the same after a backslash. This means that you can write
\\ to have a string containing a backslash character, or \" to have a string containing a
double quote character, but \a means nothing else than the letter a.

There is another way to include special characters into string constants. The usual way
in BASIC is to split the string into sub strings and concatenate the parts during run time,
like in the code fragment:

St = "This is a special string, containing a bell character at the end" & chr(7)

You can do this in ScriptBasic, but you can do it easier and more effective:
St = "This is a special string, containing a bell character at the end\7"

The last character is a number preceded by a backslash. Whenever numbers follow a
backslash character in a string ScriptBasic calculates the value of the numbers and uses the
character of the code. If the first character after the backslash is zero then the number is
treated as octal number, otherwise it is treated as a decimal number.

Strings should not contain the new line character. In other words
St = "this is
a multi line
string of three lines."

is not legal in ScriptBasic. It was legal in former versions before v1.0build15 to write
multi-line strings, but it caused problem to programmers forgetting the closing double quote
character on a line. Instead a new string constant format was introduced that starts and
ends with three double quote characters. For example:

St = """this is
a multi line
string of three lines."""

is perfectly correct. Strings starting and ending with three " characters can, but need not
span multiple lines. There is another difference between single-line and multi-line strings.
A multi-line string may contain a double quote character without escaping with backslash.
You can write:

St = """this is " a double quote character """

or you can write
St = """this is \" a double quote character """

which is also correct. The only situation where you should escape a double quote char-
acter in a multi-line string is when you want to have three or more " characters following
each other in a string. For example

St = """this is """ three double quote characters """ THIS IS WRONG

is wrong. You have to type instead:
St = """this is \""" three double quote characters """

or

Chapter 9: General Language Format 35

St = """this is "\"" three double quote characters """

or
St = """this is ""\" three double quote characters """

or
St = """this is \""\" three double quote characters """

or some other variation of escaping one or more of the consecutive " characters. The
rule is that there can not be three consecutive un-escaped " characters inside a multi-line
string.

There is another constrain regarding multi-line strings. The very first character of a
multi-line string should not be the character & or it has to be escaped with the backslash
character. Thus:

St = """\& is a
multi-line string starting with an & character """

is the correct format. If you use the & character without escaping it as the very first
character of a multi-line string it will be treated as a binary multi-line string.

A binary multi-line string is a very special beast that only hard code users need to specify
binary data inside a BASIC program. In such strings all new-line characters are ignored
unless escaped with the back-slash character. Thus the following two strings

"""&is a
binary multi-line\n string starting with an & character """

"is a binary multi-line\n string starting with an & character "

are equivalent with the exception that the second string is a liar, because that is not a
binary multi-line string. Single-line strings can not be binary, and in case the first character
of a single-line string is the & character that is just treated as a normal character.

9.3 Numbers

There are two types of numbers in ScriptBasic:
integer numbers and
real numbers.

The integer numbers can be used to represent integral values, while real numbers can
be used to represent number that have fractional part or are too large to store as integer.
The integer numbers are stored in a memory location of size equivalent to a long of the
programming language C. The real numbers are stored internally as C double.

Number constants can be used in the basic program in the usual format. Integer num-
bers are represented in either decimal or hexadecimal format. Decimal numbers contain
only digits. Hexadecimal numbers start with the characters 0x or 0X and are followed by
hexadecimal digits. The format that many basic implementation follows using the &H char-
acters to start a hexadecimal number is also allowed. When a number contains a # character
inside, like 2#110111 then the number preceding the # is the RADIX of the number and
the characters following the # is the number in the given radix. Because the limited number
of characters in the ABC the RADIX can go from 2 to 36 only. The following numbers are
valid integer constants in ScriptBasic:

36 ScriptBasic Users Guide

123

0xFF equals to decimal 255
0x255 equals to decimal 597
0X0 is a hexadecimal zero
&H52 equals to decimal 82
17#GG is 288

There is no internal difference between decimal and hexadecimal numbers for ScriptBasic.
The lexical analyzer converts both format to internal representation and stores the value
of the number. In other words wherever you are allowed to use a decimal number you
are allowed to use a hexadecimal number or any radix number as well. You should decide
whether to use decimal or hexadecimal or any other radix number for your convenience
taking care of BASIC source code readability.

Real number constants can only be decimal and may contain fractional and exponential
part. The followings are valid real number constants:

3.14
1.0
1.
2.3E-7

2.3e7
2.3E+7

Note that the exponent part is preceded by the character e or E and is followed optionally
be a sign. The number 1. is a real number and is stored in a C double internally although it
could be integer. ScriptBasic will store this number as a real number. However real numbers
are automatically converted to integer values whenever ScriptBasic needs an integer value.

9.4 Variables

Variables are core entities of ScriptBasic. Variables are used to store string, real or
integer values. Variable names start with alpha characters, underscore, dollar sign or colon,
and from the second character they may contain digit characters in addition to all these
characters. The last character of a variable name should not be colon.

Whenever you need a variable choose a meaningful name. If you are a real old BASIC
programmer use trailing $ to denote string variables. However ScriptBasic can store any
value in any variable, one at a time of course.

The colon as a name character is allowed to help name space management, and you
should use it only for the purpose.

The following are valid and invalid variable name examples:
myvariable This is a perfectly legal variable name.
main::var This is OK. This variable is in the name space main.
chr$ This is invalid. Chr$ is a reserved word,

this is a built-in function
apple$ This is OK. You will use it probably to store strings.

Chapter 9: General Language Format 37

b:2 This is valid, but it is recommended not to use : inside
variable names, because it is unreadable.
Use colon only to separate hierarchical name space and
variable name.

_mother If it is your taste to start a variable with underscore you can.
Beee$bop Valid, but it is not recommended. The dollar sign is allowed in

variable names to allow the usual BASIC string variable notation.
System or application specific extensions may use predefined global
variable names that contain a $ sign inside. Using such variable
names you may get into conflict.

::boo This is valid. This variable is explicitly noted to be in the
current name space.

_::baa This is valid. The variable is in the parent name space.
::chr$ This is valid, even though chr$ is a predefined function.

For more information on name spaces read the chapter See 〈undefined〉 [Name spaces],
page 〈undefined〉.

Variables can contain any data in ScriptBasic. There is nothing like integer or string
variable. A variable may contain integer value at a time a real value another time and string
value later. You can use a variable name to use real, integer or string value at a time; later
you may use the variable as an array; later as a real again. You can change it any time.

Variables can be local or global. Global variables are those that are not declared but
used (unless declare option DeclareVars is specified in the code, or declare option
DefaultLocal declaration is in effect). Any variable by default is global unless it is declared
to be local. Local variables are local to the function or subroutine in which they are declared
to be local. To declare local variables you should use the command local. (Note that it
is possible to use the directive declare option DeclareVars to require explicit variable
declarations. This directive is detailed later.)

REM This is a sample program to demonstrate local variables

’A is a global variable
A=13
Call MySUB
Print A,"\n",B

Sub MySUB
Local A
A=9
B=55
End Sub

The output of the program is
13

38 ScriptBasic Users Guide

55

This is because the variable B inside the sub is global, but the variable A is local and
as such it does not alter the value of the global variable A. You can define one or more
variables to be local in a local statement. If you declare more than one variable to be local
then you have to separate the variable names with commas.

9.5 Constants

Constants are values that the program can not alter. Unlike variables constants have
a single value and this value does not change during program execution. The strings and
numbers that are used in a program are naturally constants. They are the simplest forms
of constants without a name. However you may want to name constant values. You could
store the value in a named location, in a variable but that consumes an extra variable and
slows down execution.

ScriptBasic allows you to define constants using the format:
const name=value

or
global const name=value

where name is an identifier and value is a string or a number. You can not specify an
expression as a value, only constant string or number. Later you can use the name of the
constant in any expression where you could use the value of the constant. If you have the
constant declaration:

Const nl = "\n"

then the following two lines are identical, they create the same executed code and there-
fore execute the same speed and need the same size of memory:

print 6+6,nl
print 6+6,"\n"

ScriptBasic evaluates named constants during syntax analysis and the name of the con-
stant is replaced by their defined value in the expression where the constant is used.

Named constants are local to the subroutine or function they are defined in unless you
use the keyword global. If you declare a constant in a module (see chapter See 〈undefined〉
[Name spaces], page 〈undefined〉 for more on modules and name spaces) the named constant
becomes part of the name space and you can refer to the constant only with full name space
specification from outside of the module. If you declare a named constant inside a function
or a subroutine without the keyword global the constant becomes local, and can not be
used outside of the subroutine or function.

If you use the keyword global the constant is declared global. This means that the
constant is not part of any name space and can be used anywhere in the program after the
line it was declared.

When ScriptBasic finds an identifier in an expression, which is not a built-in function or
reserved word it checks the followings until a check succeeds:

Checks if the identifier is a local constant of the current function or subroutine. This
check is skipped if the expression is inside of any function or subroutine.

Chapter 9: General Language Format 39

Checks if the identifier is a constant of the current name space.
Checks if the identifier is a global constant.
Checks if the identifier is a local variable of the current function or subroutine. This
check is skipped if the expression is not inside of any function or subroutine.
If all above checks fail the identifier is treated as global, module specific variable.

Constants can be redefined. When a named constant is defined in a const statement
ScriptBasic does not check if the constant has already be defined. It is legal to change the
actual value of a constant during compile time. Note however, that this does not make a
constant to be a variable. The change of the value is performed during syntax analysis and
not during execution. Const statements do not generate any executable code and therefore
are never executed.

When an identifier is declared as a constant the identifier can not be used as variable in
an expressions following the program line that defines the constant. Sometimes you want
to delete a defined constant and use the identifier as variable again. To use an identifier as
a variable that was already defined as constant you can use the command

var name

where the name is the identifier. This declaration tells ScriptBasic that the identifier
is not a constant anymore. This declaration is similar to the normal, non-global const
declaration. If you write a var statement inside a function or subroutine the identifier
becomes a local or module specific global variable in the function or subroutine only. If you
write a var statement outside any function or subroutine the identifier becomes a variable
in the module only.

To explain the behavior let us see an example:
module TEST
a = "GLOBAL VARIABLE"
Global Const a = "a "

Const b = "b "

sub TestSub
const c = "c "
’ all three identifiers are constants here
print " values in TestSub=",a,b,c,"\n"
’ from now on until end of the sub
’ ’a’ is a variable (global or local)
var a

’ here ’a’ is a global variable
print "a in sub as a global variable holds the value=",a,"\n"

’ now a is defined to be a local variable from now on
’ until the end of the subroutine
local a
a = "LOCAL VARIABLE"

40 ScriptBasic Users Guide

print "a in sub=",a,"\n"
end sub

’ ’a’ and ’b’ are constants here again as
’ ’var’ declaration was inside the sub
print "values in the module=",a,b,c,"\n"

print "values called from within the module:\n"
TestSub

’ ’a’ is a variable from now on (global only
’ as we are global here)
var a

’ here a is a global variable again
print "a in module=",a,"\n"

end module

’ here ’a’ is a global const (var a was inside the module)
’ --
’ ’b’ was const but not ’global const’, so here it is
’ a global variable again
’ --
’ ’c’ was inside the module, inside the sub. Here it is
’ totally undef
print "values outside the module=",a,b,c,"\n"

print "values called from outside the module:\n"
TEST::TestSub
var a
print "a in global=",a,"\n"

The output is:

values in the module=a b undef
values called from within the module:
values in TestSub=a b c

a in sub as a global variable holds the value=GLOBAL VARIABLE
a in sub=LOCAL VARIABLE
a in module=GLOBAL VARIABLE
values outside the module=a undefundef
values called from outside the module:
values in TestSub=a b c

a in sub as a global variable holds the value=GLOBAL VARIABLE
a in sub=LOCAL VARIABLE
a in global=undef

Chapter 9: General Language Format 41

To help understand even deeper the behavior of local, global, module specific constants
and variables here we present a short description how the syntax analyzer handles the
constants. You need read this only if you are curious.

There are several symbol tables during syntax analysis. ScriptBasic maintains a symbol
table

for the labels,
one for global variables,
one for local variables and
a separate one for constants.

When a constant is defined the name and the corresponding value gets into this symbol
table. If the const statement is global the name is not altered. If the const statement is not
global the name is modified to include the name space. This modification is the same as
the modification for variables. After this modification an apostrophe character is appended
to the constant name and the name of the actual function or subroutine if the constant is
defined inside one. This is the same name decoration mechanism, which is performed for
the labels.

When an identifier is found in an expression the syntax analyzer searches for the name
module::constname’function in the symbol table if the expression is inside a function or
subroutine. If the expression is in a global area - out of any subroutine or function - this
search is not performed. If there is no such entry in the symbol table the analyzer searches
for the symbol module::constname’. If this symbol is still not defined in the symbol table
the analyzer searches constname.

If any of the names can be found in the symbol table the identifier constaname is replaced
in the token list with the value of the constant.

When a var statement declares an identifier to be constant it actually does a weird
action inside the interpreter. It redefines the constant name module::constname’ or
module::constname’function to be associated with the value NULL. In other words, when
the syntax analyzer finds the constant name in the symbol table and retrieves the pointer
that is supposed to point to the constant replacement lexical element it gets a pointer with
NULL value. But it does find the constant name in the symbol table and the search finishes
successfully. On the other hand the next step in the syntax analysis sees only the NULL
value in the constant replacement pointer and thinks that no constant was found.

This means that if the basic program has a global constant and we declare the identifier
to be a variable using a var statement the constant search stops when it finds it to be a
local (either function or subroutine local or module local) constant. A local constant that
happens to have a replacement pointer pointing to NULL. And it does not search for the
global constant, because it did find a symbol table entry.

The same situation happens if a module constant is redefined using the var statement
inside a subroutine or function.

ScriptBasic defines some named constants before it starts analyzing the program. These
named constants always start with the letters sb, and their purpose is to help the program-
mer to set various options in option statements.

The global constants defined by the ScriptBasic interpreter are:
sbCaseSensitive

42 ScriptBasic Users Guide

sbCaseInsensitive

sbMathErrDiv

sbMathErrUndef

sbMathErrUndefCompare

sbCollectDirectories

sbCollectDots

sbCollectRecursively

sbCollectFullPath

sbCollectFiles

sbSortBySize

sbSortByCreateTime

sbSortByAccessTime

sbSortByModifyTime

sbSortByName

sbSortByPath

sbSortAscending

sbSortDescending

sbSortByNone

SbTypeUndef

SbTypeString

SbTypeReal

SbTypeInteger

SbTypeArray

These constants are defined by the interpreter and there is no need to include any file
to use these constants. Other constants are defined in various header files.

9.6 Forcing Variable Declaration

BASIC languages generally do not require variable declaration to be programmer
friendly. ScriptBasic is no exception for compatibility reasons: you can write huge
programs without declaring any variable. Although this is possible this is not a good
practice. Programmers can easily mistype a variable name and end up getting a new
variable with undef value instead of getting compilation error. This may cost a lot of
debugging time.

To help programmers avoid such a situation ScriptBasic can be asked to report any such
variable as compilation error. However this also means that the programmer has to declare
the global variables. To tell ScriptBasic that a certain part of the program or the whole
program requires variable declaration the programmer has to issue the declaration

declare option DeclareVars

This is a directive that does not generate any code, but tells the compiler to require
variable declaration. To declare global variables the program should use the command
global. For example

Chapter 9: General Language Format 43

declare option DeclareVars
global a,b,c

declares three global variables a, b and c. The directive declare option DeclareVars
is effective from the line where the directive is. Any undeclared variable used before the
directive can also be used without declaration after the directive as well. For example:

a = 2
declare option DeclareVars
global b,c
b = 3
c = 4
print a,b,c
print

The variable a is implicitly declared before the directive and thus it can be used even
after the directive. Before the directive the global variables are implicitly declared. As no
global variable is allowed to be declared more than once such an implicitly declared variable
should NOT be declared in a global declaration. For example

a = 2
declare option DeclareVars
global a

generates compilation time error. Once you switched on the variable declaration require-
ment, you should declare each new global variable until the end of the program. This means
that all included or imported files should declare all global variables if you use the directive
before including or importing a file. Because this may pose some incompatibility with older
code you can use the directive

declare option AutoVars

Following this line the declaration is implicit again until the end of the program or
until the next declare option DeclareVars. You can switch on and off global variable
declaration forcing as many times as you like. It is also not an error to switch it on if this
is already on, or off it is already off. The compiler does not count however the number of
on and off directives. Thus

declare option DeclareVars
declare option DeclareVars
declare option AutoVars

is just the same as
declare option DeclareVars
declare option AutoVars

or just the same as
declare option AutoVars

It is always the last declare option directive, which is in charge.
Although you can mix program segments that require and do not require global variable

declaration it is recommended to issue declare option DeclareVars at the start of the
program and declare all global variables.

44 ScriptBasic Users Guide

9.7 Arrays

Arrays are memory locations that store many values at the same time. While normal
variables store a single value at a time, an array variable can store many values. The
values are accessed via the name of the variable and the appropriate indices. The index or
indices follow the name of the variable between [and]. This is the usual notation for most
programming languages, like C, Perl, PASCAL, Python. Some BASIC implementations use
(and) instead, but that confuses array access and function call.

In the following subsections we describe how to use arrays.

9.7.1 Creating arrays

Any variable can become an array. In ScriptBasic arrays are automatically created.
There is no statement like DIM. All you have to do is to use the variable like an array. Array
subscripts are written using square brackets. This is usually the convention in PASCAL and
in C. Other BASIC languages use normal parentheses to index arrays. That confuses the
reader as well as the parser, because function call looks the same as array access. Therefore
ScriptBasic uses the square brackets.

There is no limit on the number of indices. You can use as many as you like. Also
there is no limit on the index values other than the index values have to be integer and
that memory may limit the array sizes. Positive, negative or zero integers can play the role
of an index. Whenever you access an array element or assign a value to that ScriptBasic
automatically checks if the referenced array element exists or not and adjusts the array if
necessary. For example:

a[1] = 3
a[5]=4
for i=1 to 5
print a[i]
print
next

is perfectly legal and prints:
3
undef
undef
undef
4

Arrays are handled quite liberal. You are not required to declare the index bounds, you
need not declare the number of indices. As a matter of fact you can have different number
of indices at different points in the array. For example the following code is also legal:

a[1] = 3
a[5,3]=4
print a[1],"\n",a[5,3]

You can even write:
a[1] = 3

Chapter 9: General Language Format 45

a[5,3,1,6,5,4,3,6,4,3,2222]=4
print a[1],"\n",a[5,3,1,6,5,4,3,6,4,3,2222]

if you wish.
What happens if you write:

a[1] = 3
a[5,3]=4
print a[1],"\n",a[5]

ScriptBasic will print
3
ARRAY#008C0BC8

or some similar message. What has happened? To understand we have to explain how
ScriptBasic stores the arrays.

An array in ScriptBasic is stored as a list of C pointers. When a ScriptBasic variable
first time used as an array a new array of a single element is created. It has one element
assigned to the index that was referenced.

VARIABLE[6] = 555

Later, when other elements are referenced the array is automatically extended. For
example if the array was first time referenced using the index 6 and it was accessed second
time using the index 11 ScriptBasic automatically extends the array to contain six elements.

VARIABLE[11] = "a string"

This means that an array can consume significant memory even if only a few indices are
used.

VARIABLE[10,3] =6.24E3

When an array element, let’s say index 10 is used with a second index, let’s say with
3 a new one-element array is created. Later this new array is treated the same as the one
assigned to the variable itself, and when the element

VARIABLE[10,6] = 55

is set it is enlarged to be able to hold all values between indices 3 and 6.
When the variable in our example named VARIABLE gets a new value, like

VARIABLE = "NEW VALUE"

the arrays are released automatically.
When accessing an array element, which is an array itself ScriptBasic tries to do its best.

However the result may not be what you expect.

9.7.2 Array index limits

Because array indices are automatically adjusted the lower and upper limit of indices
of an array are not constant. They may change. To get the lowest and the highest index
of an array that has assigned value (possibly undef) you can use the function lbound and
ubound. The names stand for lower bound index and upper bound index.

For example the simple program

46 ScriptBasic Users Guide

a[1] = undef
print lbound(a)," ",ubound(a)
print

a[2,-3] = "whoops"
print lbound(a)," ",ubound(a)
print
print lbound(a[2])," ",ubound(a[2])
print

will print
1 1
1 2
-3 -3

As you can see the argument to these functions can be a variable that has array value or
an expression that has an array value. (Such an expression is likely to be an array element,
which is an array by itself.)

When the argument is not an array the functions returns undef.

9.7.3 Deleting an array

Usually there is no need to delete an array. Arrays are allocated when they are needed
and are released when they are not needed anymore. However there may be some circum-
stances, when there is a need to explicitly delete an array and release the memory assigned
to the array. To do this you have to use command undef. The name is the same as the func-
tion undef, but instead of returning the undefined value this command sets the variables
listed after the command name to hold the undefined value. The format is

undef variable_list

The variable list may contain variables that are arrays, variables that hold string, integer
or real values and may also contain array elements, like a[13], which is a variable itself. When
you apply the command undef to a variable, which is not an array or reference the result is
the same as assigning the undefined value to the variable. For example the following lines

undef A
A = undef

have the same effect unless A is an array or reference. However when the variable A is an
array assigning to it the undefined value will make the first element of the array undefined
and not the whole array. To explore the effects try to run the following program:

sub fun(a)
print a,"\n"
print lbound(a),"\n"
print a[1]," ",a[2]," ",a[3]
print
print
end sub

k[1] = 1

Chapter 9: General Language Format 47

k[3] = 2
fun k
k = undef
fun k
undef k
fun k

After running it comment out the line undef k and compare the result running the
program again.

9.8 Associative Arrays

Associative arrays were introduced in ScriptBasic v1.0build19. This section does not
apply to any previous version.

Languages, like Perl or AWK have associative arrays and so does ScriptBasic. Associative
arrays differ from arbitrary arrays in two points:

The index is written using curly brackets, like
a11

instead of normal brackets.
The value of the index can be anything not only integer numbers.

When you use a variable as associative array you can use strings, integers, real numbers
and even the value undef as index value. Whenever you access certain element of an
associative array the interpreter searches for the index value and uses the value associated
with it. This leads to compact and easy to read programs.

For example:

const nl="\n"
a"foo" ="foo value"
a"bar" = "bar value"
a"dummy" = "dummy value"

print a"foo",nl

will print

foo value

If you use an index that is not present in the associative array the result is undef.

const nl="\n"
a"foo" ="foo value"
a"bar" = "bar value"
a"dummy" = "dummy value"

print a"FOO",nl

will print undef.

48 ScriptBasic Users Guide

Note that in this situation a new element with the new key is created automatically
containing the value undef.

Index values that are undef, integers or real numbers can be referenced using the exactly
same value. When using strings as keys the matching is performed according to the option
‘compare’. The previous example altered a bit:

option compare sbCaseInSensitive
const nl="\n"
a"foo" ="foo value"
a"bar" = "bar value"
a"dummy" = "dummy value"

print a"FOO",nl

will find the key and print foo value, although the key used for definition and the key
used for reference differ is case.

Associative arrays inside ScriptBasic are stored as normal arrays. The difference between
normal array and associative arrays are the way the programmer handles them. Advanced
programmers may and most probably should use associative arrays as normal arrays as well.

An associative array is nothing else than a normal array storing the keys on the even
indices and the values on the odd indices. When you reference

a"foo"

the interpreter starts to search the string "foo" on the even indices of the array and
when it finds it returns the next element. To explain it see the following sample:

const nl="\n"
a"foo" ="foo value"
a"bar" = "bar value"
a"dummy" = "dummy value"

for i=lbound(a) to ubound(a)
print i," ",a[i],nl
next i

will print
0 foo
1 foo value
2 bar

3 bar value
4 dummy
5 dummy value

You can see that the keys and values are paired up in the array. Knowing this you can
iterate over the keys of an associative array:

const nl="\n"
a"foo" ="foo value"
a"bar" = "bar value"

Chapter 9: General Language Format 49

a"dummy" = "dummy value"

for i=lbound(a) to ubound(a) step 2
print "a",a[i],"=",aa[i],nl
next i

to get
afoo =foo value
abar =bar value
adummy =dummy value

Note, however that in case the same key present many times in the array using the a
notation finds always the first value. For example:

const nl="\n"
a"foo" ="foo value"
a"bar" = "bar value"
a"dummy" = "dummy value"
a[6] = "foo"
a[7] = "never found"

for i=lbound(a) to ubound(a) step 2
print "a",a[i],"=",aa[i],nl
next i

will print
afoo=foo value
abar=bar value
adummy=dummy value
afoo=foo value

and it never print never found.
Knowing that the associative arrays are just normal arrays inside one can even make

dirty tricks:
const nl="\n"
a"foo" ="foo value"
a"bar" = "bar value"
a"dummy" = "dummy value"
a[-1] ="hoho"

for i=lbound(a) to ubound(a)
print i," ",a[i],nl
next i

print "--------------------------------\n"

top = ubound(a)
for i=lbound(a) to top step 2
print i," a",a[i],"=",aa[i],nl

50 ScriptBasic Users Guide

next i

will result

-1 hoho
0 foo
1 foo value
2 bar
3 bar value
4 dummy

5 dummy value

-1 ahoho=foo

1 afoo value=bar
3 abar value=dummy
5 adummy value=undef

Adding an extra -1-th element to the array all indices became values and all values
became indices.

Associative arrays can have multiple indices just like normal arrays. For example:

sub printit(zz)
print zz"foo","\n"

end sub
a"dummy","bar" = 13
a"dummy","foo" = 14
printit a"dummy"
print a"dummy","bar", _
" ",a"dummy","foo"

will print

14
13 14

9.8.1 Notes for using associative arrays

Strictly speaking there are no associative arrays in ScriptBasic. Rather arrays can be
used in associative mode. This implementation of associative arrays is simple and is powerful
enough to use small arrays with a small amount of keys. The typical use of associative arrays
is to get a feature like record in PASCAL or struct in language C. Note that this type of
storage is less than optimal in case it is used for a huge number of keys and values.

Searching the keys in the array is linear. It means that accessing a single element
needs time proportional to the size of the array. The external module "hash" provides an
implementation, which is much more powerful and much faster for large associative arrays.

Chapter 9: General Language Format 51

9.9 Using Array Mixed Mode

Once you will reach a point when you want to use an array in a mixed indexed mode.
For example you want to handle an array of associative arrays. In other words you want to
have an array, of which each element is an array itself.

For example you want to store the phone number, the room number and the name of
the dog for each of your employee. You have 78 employees in your firm. In this case you
need an array having 78 elements, each element being an associative array itself, with the
keys "phone", "room", "dogname".

To do this you can
FOR I=1 to 78

PRINT I,". ",EMPLOYEE[I]"phone"," ",EMPLOYEE[I]"room",_
" ",EMPLOYEE[I]"dogname",\n"

NEXT I

You can mix the indices any order in any deepness. For example
ARR"1"[2,3][3]undef,"3",4"5"[66]

is correct. What you can use it for is another question though.
Note that

a[3][5]

is almost the same as
a[3,5]

but the latter is a bit more efficient (due to ScriptBasic internal algorithms). The details
on differences can be read in the section See 〈undefined〉 [Reference Variables], page 〈unde-
fined〉.

9.10 Expressions

To calculate values you will need expressions. The simplest expression is the one that
contains only a constant number or string of the format described in the previous sections.
A bit more complex expression contains variables, array elements, operators, function calls,
and even parentheses.

ScriptBasic expression format is much the same as that of many other basic languages.
The operators have precedence of the usual order, and you can alter the order of operator
evaluation using parentheses. The operators are in order of precedence from the highest to
the lowest:

^ Power operator. a^b means a to the power b.
* Multiplication operator. This operator multiplies the operands.
/ Division operator. This operator divides the left operand by the right operand and
the result is usually a real number.
\ Integer division operator. This operator divides the left operand by the right operand
and the result is an integer.

52 ScriptBasic Users Guide

% Modulus operator. This operator divides the left operand by the right operand and
the result is the remainder after the division.
+ Plus operator. This operator adds the operands and the result is the sum of the two
operands.
- Minus operator. This operator subtracts the right operand from the left operand and
the result is the signed difference of the two operands.
= Equality check operator. This operator checks if the operators are equal and results
true if they are equal. Otherwise the result is false.
< Less than check operator. This operator checks if the first operand is less than the
second operand and results true if yes. Otherwise it results false.
<= Less than or equal check operator. This operator checks if the first operand is less
than the second operand or is equal to the second operator and results true if yes.
Otherwise the result is false.
>Greater than check operator. This operator checks that the first operand is greater
than the second one and it results true of yes. Otherwise it results false.
>= Greater than or equal check operator. This operator checks that the first operand
is greater than the second operand or is equal to the second operand
<> Not equal check operator. This operator checks that the operands are NOT equal
and it results true if they are not equal. Otherwise it results false.
And Logical and bit-wise AND operator. This operator calculates the logical and the
bit-wise AND operation of the operands.
Or Logical and bit-wise OR operator. This operator calculates the logical and the
bit-wise OR operation of the operands.
Xor Logical and bit-wise exclusive OR operator. This operator calculates the logical
and the bit-wise exclusive OR operation of the operands.
& String concatenation operator. This operator concatenates the operands as strings.
LIKE Pattern matching operator.

These binary operators are evaluated from left to right. This means that 6-3+3 is 6 and
not zero. This should be usual and obvious. 3 is subtracted from 6 and the last 3 is added
to the result of the subtraction.

Operand types are not determined during compilation. There are no integer, real or
string variables in ScriptBasic, any variable can hold any value (but only one at a time).
Whenever a numeric operator gets a string value it converts the value automatically to nu-
meric. The concatenation operator automatically converts the numeric operands to string.

Operators that work with both numeric and string operands do not convert the operands.

9.10.1 Operators

9.10.1.1 Power operator (^)

The power operator a^b calculates the b-th power of a.

Chapter 9: General Language Format 53

The actual implementation of the power operator is quite complex. It tries to be as
precise as possible. In case the calculation can be carried out using integer numbers only
integer calculation is used. This way no unnecessary rounding errors are introduced.

If the mantissa is positive then the calculation is definite. However unlike other BASIC
implementations ScriptBasic tries to calculate the result of the power operator even when the
mantissa is negative. Actually power operator always results an integer or real number when
possible. The implementation internally uses complex numbers and in case the imaginary
part of the result is zero the real value is used as the result.

If either of the operands are undef then the result is undef.

9.10.1.2 Multiplication operator (*)

The multiplication operator multiplies the operands. If any of the operands are undef,
the result is also undef. If any of the operands is real, then the result is real, otherwise it
is integer. The string operands are converted to numbers.

9.10.1.3 Division operator (/)

This operator divides the first operand with the second. If any of the operands are undef
then the result is undef. If the second operand is zero then the result is undef. If one of the
operands is a real number then the calculation is carried out on real numbers and the result
is real. If the operands are integer, but the calculation can not be performed to result an
integer number without remainder then the operand values are converted to real. If both of
the operands are integers and there is no remainder after the division the result is integer.
String operands are automatically converted to numeric value. In case the option

OPTION RaiseMathError sbMathErrDiv

was used the operator will raise an error when the second argument is zero.

9.10.1.4 Integer division operator (\)

This operator divides the first operand with the second. If any of the operands are undef
then the result is undef. If the second operand is zero then the result is undef. If one of the
operands is a real number then the calculation is carried out on real numbers and the result
is real. If the operands are integer then the calculation is performed using integer numbers
and the result is truncated towards zero. String operands are automatically converted to
numeric value. In case the option

OPTION RaiseMathError sbMathErrDiv

was used the operator will raise an error when the second argument is zero.

9.10.1.5 Modulus operator (%)

This operator calculates the remainder of the two operands. The operands are converted
to integer value and the result is integer. If the second operand is zero the result is undef.
In case the option

54 ScriptBasic Users Guide

OPTION RaiseMathError sbMathErrDiv

was used the operator will raise an error when the second argument is zero.

9.10.1.6 Addition and subtraction operators (+, -)

These operators are both binary and unary operators. In their unary form they are used
out of the precedence orders. Unary operators are always applied first, unless parentheses
drive different calculation order.

If any of the operands is undef then the result is undef. If any of the operands is real
the calculation is performed using real numbers and the result is real. If both operands are
integer the calculation is performed using integer numbers and the result is integer.

9.10.1.7 Bit-wise and logical NOT (NOT)

This unary operator calculates the logical negate of the operand. The calculation is done
on integer numbers, thus the operand is converted to integer value. The operator inverts
each bit of the operand. If the operand is undef the result is -1, which is the internal value
for TRUE.

Great care should be taken when using the NOT operator in logical expressions. The
precedence of the operator is higher than that of any binary operator. Therefore the ex-
pression

not true or false

is true, while
not (true or true)

is false.

9.10.1.8 Equality operator (=)

This operator compares the operands. If both operators are undef the result is -1, which
is the internal value for TRUE. If only one of the operands is undef then the result is zero,
which is the internal value for FALSE. In other words undef is equal to undef, but nothing
else.

If any of the operands is string then the comparison is done on strings. The non-string
operand if any is converted to string. String comparison is case sensitive by default, but
you can alter this behavior using the statement option. Two strings are equal iff they are
the same length and contain the same valued bytes in the same order.

If the operands are numeric and at least one of them is a real number then the comparison
is done on real numbers. Otherwise the comparison is done on integer numbers.

The result of the operator is always -1, which is the internal value for TRUE or 0, which
is the internal value for FALSE.

To alter the behavior of case sensitive comparison you can use the statement
option compare sbCaseInsensitive

The comparing operator looks at the option "compare" and decides how to compare two
strings. The global constant sbCaseInsensitive is pre-declared by ScriptBasic and can be

Chapter 9: General Language Format 55

used anywhere in your program. To switch back to case sensitive comparison you have to
issue the command

option compare sbCaseSensitive

The global constant sbCaseSensitive is also a pre-declared constant. Note that the option
"compare" is also used by the pattern-matching operator like and also alters the behavior
of directory listing under UNIX.

9.10.1.9 Not equal operator (<>)

This operator compares the operands. If both operators are undef the result is 0, which
is the internal value for FALSE. If only one of the operands is undef then the result is -1,
which is the internal value for TRUE. In other words undef is equal to undef, but nothing
else.

If any of the operands is string then the comparison is done on strings. The non-string
operand if any is converted to string. String comparison is case sensitive. Two strings are
equal iff they are the same length and contain the same valued bytes in the same order.

If the operands are numeric and at least one of them is a real number then the comparison
is done on real numbers. Otherwise the comparison is done on integer numbers.

The result of the operator is always -1, which is the internal value for TRUE or 0, which
is the internal value for FALSE.

Later versions may change the behavior of this operator in case of string comparison
allowing case-insensitive comparison.

9.10.1.10 Compare operators (<, <=, >, >=)

These operators compare numeric and string values. The result of the operation is undef
if any of the operands is undef. If any of the operands is string the operands are converted
to string value and string comparison is performed. If none of the operands is string but at
least one of the operands is float value then the operands are converted to floating number
and the comparison is done comparing floating numbers. Otherwise the comparison is done
with integer numbers.

The result of the operator is always -1, which is the internal value for TRUE or 0, which
is the internal value for FALSE.

9.10.1.11 Logical operators (and, or, xor)

These operators can be used for both logical and bit-wise operators. ScriptBasic does
not have a separate type for logical values. Boolean values are stored in integer storage.
The logical TRUE is represented as integer value -1 and the logical FALSE is 0. In other words
the logical TRUE is an integer value, which is represented by a memory location of n bytes
having all bits set to 1. On the other hand logical FALSE is an integer value represented by
a memory location of n bytes having all bits reset.

The operators and, or and xor perform the calculation on integer values, If any of the
operands is not integer it is converted to integer value before the operation takes place. The
operations are performed on each bit of the operands.

56 ScriptBasic Users Guide

This means that the operators can also be used for logical operations.

9.10.1.12 Concatenation operator (&)

This operator converts the operands to string value unless the operand is already a string
value and results a string, which is the concatenation of the operands. The result string is
placed in a newly allocated place, in other words the operation does not alter any of the
operands.

9.10.1.13 ByVal operator

This operator is a very special one. This actually does nothing but results the operand
unaltered. Why to have such an operator? The reason is to help calling functions and
passing arguments by value. When an expression is passed as an actual value for a function
argument it is passed by value. In other words the function gets the value of the expression.
When a variable is used as the actual argument for the function the function gets the
variable and not the value. Of course the function can use the value of the variable, but
when it alters the variable, the original variable is also changed. To avoid this you can use
the operator ByVal in front of the variable, which is passed to a function as argument. In
this case the argument is not a variable anymore, but rather an expression and thus the
called function or subroutine can not alter the value of the argument variable.

9.10.1.14 LIKE operator

The like operator is a pattern matching operator. Pattern matching is complex issue
and is documented in a separate chapter in details. See chapter See 〈undefined〉 [Pattern
matching], page 〈undefined〉.

9.10.1.15 Extension operators

Extension operators are defined and recognized by the ScriptBasic syntax analyzer but
no execution is implemented behind. Thus using any of the extension operators will result
an error "command is planned, but not implemented". Why to have these operators?

These operators can be implemented by external modules. An external module developer
may decide to define the behavior of any of the operators. For example an extension may
decide to implement a hashing algorithm and decide that a->b should result the actual hash
value from hash a having the key b. Any program wanting to use this functionality can
load the module using the statement declare sub and use the operator.

Operators that are undefined by default but can be used by external modules are:

? ! # ‘ @
+^ +< +> +? += +* +/ +% +! +# +& +\ +‘ +’
+ -^ -< -> -? -= -* -/ -% -! -# -& -\ -‘
-’ - ^^ ^< ^> ^? ^= ^* ^/ ^% ^! ^# ^& ^\

Chapter 9: General Language Format 57

^‘ ^’ ^ <^ << <? <* </ <% <! <# <& <\ <‘
<’ < >^ >< >> >? >* >/ >% >! ># >& >\ >‘
>’ > ?^ ?< ?> ?? ?= ?* ?/ ?% ?! ?# ?& ?\
¿ ?’ ? =^ =< => =? == =* =/ =% =! =# =&
=\ =‘ =’ = *^ *< *> *? *= ** */ *% *! *#
*& *\ *‘ *’ * /^ /< /> /? /= /* // /% /!
/# /& /\ /‘ /’ / %^ %< %> %? %= %* %/ %%
%! %# %& %\ %‘ %’ % !^ !< !> !? != !* !/
!% !! !# !& !\ ¡ !’ ! #^ #< #> #? #= #*
#/ #% #! ## #& #\ #‘ #’ # &^ &< &> &? &=
&* &/ &% &! &# && &\ &‘ &’ & \^ \< \> \?

\= * \/ \% \! \# \& \\ \‘ \’ \ ‘^ ‘< ‘>
‘? ‘= ‘* ‘/ ‘% ‘! ‘# ‘& ‘\ ‘‘ ‘’ ‘ ’^ ’<
’> ’? ’= ’* ’/ ’% ’! ’# ’& ’\ ’‘ ’’ ’
^
@< @> @? @= @* @/ @% @! @# @& @\ @‘ @’ @@

The analyzer recognizes these operators as valid. They can be used as unary operator
as well as binary operator. Used as binary operator they have the highest precedence, one
level above the power operator and they are all evaluated from left to right.

Since build25 the unary operator # is implemented as identical operator resulting the
argument of it unchanged. This is to aid the old BASIC programmers, who got used to
write

open "file" for input as #1

9.10.1.16 Planned, Future Operators

Later versions of ScriptBasic will contain other operators implemented. The planned
operators are:

SHL bit shift left
SHR bit shift right

9.11 Assignments (LET)

Assignment is the most important command of languages. This is used to assign calcu-
lated values of expressions to variables. You have already seen examples of it but we did
not discuss it in details so far. An assignment is nothing else than a variable on the left
side of an = character and an expression on the right side.

The command calculates the expression first. The expression may contain the variable
that stands on the left side. In this case the variable holds its original value while calculating
the expression. When the expression is fully evaluated the command releases the old value
of the variable and then assigns the new value just calculated.

The calculated value can be string, integer, real number, even undefined or a whole array.
The variable can be a global variable, local variable, argument of a subroutine or function
or element of an array. For example:

58 ScriptBasic Users Guide

’ This assigns the value 18 to the variable A
A = 13 + 5
’ This assignes the value "apple" to the array element
B[55] = "apple"

When the right hand side of the assignment is a whole array ScriptBasic creates a copy
of the array and the left hand side variable will hold the new array.

Regarding evaluation order the assignment command first calculates the variable on the
left side of the command and then it calculates the expression. Why is this important?
There can be some special cases. Look at the following example:

function q
z = z + 1
q = z
end function

z =55
a[q()] = z
print a[56]

Will it print 55 or 56? Because the left side of the command is evaluated first it does
print 56.

Some BASIC implementations allow a keyword LET to be used before the variable on
the left side of the command before the variable. This is rarely used by programmer and is
not allowed by ScriptBasic.

9.12 Operator Assignments

Most of the times we assign the value of an expression to a variable, which uses the
variable itself. For example

A = A + 1

increments the variable A. To ease programming ScriptBasic allows the construct

A += expression

instead of

A = A + expression

This is a well known and widely used form by many languages, well readable, though
not BASIC like. Likewise programmers can write

A -= expression instead of A = A - expression
A *= expression instead of A = A * expression
A /= expression instead of A = A / expression
A \= expression instead of A = A \ expression
A &= expression instead of A = A & expression

This is more readable for most of the programmers and results slightly faster execution
for addition, subtraction, multiplication, division, integer division and string concatenation
respectively.

Chapter 9: General Language Format 59

9.13 Comments

You can insert comments into the source file. A line starting with the keyword REM or
starting with the character ’ (apostrophe) is treated as comment line.

REM This is a simple program that prints the words "HELLO" and "WORD"
REM to the screen
PRINT "HELLO WORLD"

Or you can write it

’ This is a simple program that prints the words "HELLO" and "WORLD"
’ to the screen
PRINT "HELLO WORLD"

However you can not use comments after commands, and therefore you can not write:

PRINT "HELLO WORD" ’This comment is invalid in ScriptBasic

or

PRINT "HELLO WORD" REM This comment is invalid in ScriptBasic

Note that the comment lines are tokenized and are "removed" from the source file after
the lexical analyzer is done. Why is this important? Because multi-line strings may span
more than one line. In this case the whole string that starts on a line being part of a
comment will become comment. This way you can easily create multi-line comments that
are quite useful for program documentation. For example:

’ """

FILE: test.sb
AUTHOR: Peter Verhas
DATE: August 20, 2002

CONTENTS:
This is a program that contains nothing else but a multi-line
Comment.

"""

9.14 Including Files

You prepare your BASIC programs for ScriptBasic using some text editor. This is
usually NOTEPAD under Windows operating systems and it is emacs or vi under UNIX.
You enter the program line by line, but sometimes you may want to include other files into
your program. One way is to use the copy and paste functionality of the editor. However
this will lead unnecessary big text files and unmanageable projects. Instead you can use
the INCLUDE command of ScriptBasic.

Whenever you want to include the file named ‘myinclude.bas’ you should write

INCLUDE "myinclude.bas"

60 ScriptBasic Users Guide

into your program. Although statements are not case sensitive, file names are on UNIX
systems. On Windows systems the operating system preserves the case of the file names,
but you can reference the file using any case letters.

If you want to maintain portability of your programs (and you usually should) use always
lower case file names and reference them using lower case letters.

When you specify file names that reside in a different directory you can specify relative
file names, or absolute file names including the path of the file. If ‘myinclude.bas’ is in a
subdirectory you should write:

INCLUDE "sudir/myinclude.bas"

Here we can mention another point of portability. UNIX uses the forward slash as file
separator character. Windows command line interpreter use the back slash. In ScriptBasic
you can use both separators on Windows and on UNIX as well. You can even mix them in
a single path. We recommend that you use the forward slash character for the purpose.

If you use the back-slash characters in file names in ordinary BASIC strings like in the
statement OPEN you usually have to double the character because this character plays the
role of the escape character in strings. This is not the case for the include statement. You
should write

REM a correct include statement
INCLUDE "subdir\myinclude.bas"

but
REM bad include statement
INCLUDE "subdir\\myinclude.bas"

will eventually fail to include the file.
Whenever you specify a relative directory, which is above the directory of the including

file use the double dot notation of the parent directory, like
INCLUDE "../parentel.bas"

Whenever a relative file name is specified in an include statement the file name should
be relative to the file that contains the include statement. For example you may have the
three files:

C:\BASIC\INCLUDE\myinclude.bas

C:\BASIC\myprog.bas
C:\BASIC\INCLUDE\SYS\system.bas

The program ‘myprog.bas’ includes the file ‘myinclude.bas’ using the statement
INCLUDE "include/myinclude.bas"

The program ‘myinclude.bas’ includes the file ‘system.bas’ using the statement
INCLUDE "sys/system.bas"

The INCLUDE statement has another form:
INCLUDE mymodule.inc

This is similar to the format discussed above with the exception that there is no quote
character around the file name. In this case ScriptBasic tries to locate the named file in one
of the configured include directories. The file name in this case should not contain space.

Chapter 9: General Language Format 61

Such include files usually belong to binary modules that ScriptBasic can dynamically load,
and the included files declare the function implemented in the binary module.

The statement INCLUDE is processed before the variables, numbers, string and other
lexical elements are recognized. This may result some strange behavior. For example the
code:

T$ = """this is a multi-line string that
Include "otherfile.txt"
includes another file."""

is correct and results a string that contains the content of the file otherfile.txt. This may
seem strange but it is the way ScriptBasic preprocessing handles the include directive.

Be aware of this feature as this may lead to strange errors when a multi-line string
contains lines that start with the word include, import or use. Because nor the character
i neither the character u has a special meaning back-slashed you can easily overcome the
situation prepending a backslash \ character before the special word. For example:

T$ = """this is a multi-line string that
\Include "otherfile.txt"
does not include another file."""

As your program goes larger and larger you split it up into included files. The code that
includes them may include one file, including another file and so on. It may finally result
some file included more than once. To avoid redefinition of thing and unnecessary code
repetition ScriptBasic has another preprocessor statement named IMPORT.

IMPORT behaves the same way as INCLUDE does with the exception that it does not
include the file if the file was already included by a previous INCLUDE or IMPORT preprocessor
statement.

9.15 Internal preprocessors

ScriptBasic does not have a built-in macro preprocessor, like language C. However it
has an open interface that third party developers can use to develop preprocessors. A
ScriptBasic program may have one or more USE commands in it. This command should
stand alone on a line being a preprocessor command.

The format of the command is:
USE preprocessor_name

After ScriptBasic has loaded the source code and has included all the files specified by
the include statements it scans the lines containing a USE statement. When it finds one it
loads the external preprocessor module compiled by the third party developer into a DLL
or SO file and calls the preprocessor function. The preprocessors get total control over the
source file loaded into memory and are free to alter the source code.

The preprocessor DLL or SO file should be specified in the configuration file. For example
the line

preproc (
internal (
dbg "E:\\MyProjects\\sb\\Debug\\dbg.dll"
)

62 ScriptBasic Users Guide

...

from the default Win32 ‘scriba.conf’ file defines what DLL file to load when the source
file uses the preprocessor called dbg that actually happens to be the debugger preprocessor.

Internal preprocessors can also be loaded using the command line option ‘-i’. For
example in case you want to start a ScriptBasic program from the command line using the
command line debugger you can type:

scriba -i dbg mybugous_program.bas

For more information on how to use a preprocessor see the documentation of the pre-
processor.

9.16 Using external preprocessor

An external preprocessor is a stand-alone program that lets the programmer easily extend
the language. The simplest available external preprocessor is the HEB preprocessor that lets
a programmer embed ScriptBasic into HTML. This preprocessor is written in ScriptBasic
and converts HTML embedded ScriptBasic code into pure ScriptBasic.

When ScriptBasic recognizes that an external preprocessor is to be started it does not
read the source file but starts the external preprocessor and uses the file created by that. The
external preprocessor should be an executable program that gets at least two arguments:
the name of the file to preprocess and the file name to create; containing the preprocessed
text.

The external preprocessor exits with the code zero in case it was executing successfully
and should exit with the code 1 if an error occurred and the output file can not be used.
This is the usual UNIX exit code convention for processes.

There can be more than one external preprocessors applied to a program. In case there
are more than one preprocessors applied to a file then ScriptBasic starts each of them one
after the other each getting the output file of the previous to work on.

The preprocessors should be configured in the configuration file before ScriptBasic can
execute any of them. Each preprocessor should have a symbolic name. This is the choice
of the person who configured the ScriptBasic installation. You can name a preprocessor as
you like, it will not alter the behavior.

For example the HTML embedded basic preprocessor is named heb in the sample con-
figuration file. To use this preprocessor you can use the option ‘-p’ on the command line
following with the name of the preprocessor:

scriba -p heb myheb.bas

You can also assign file extensions to preprocessors. The sample configuration file con-
tains the line:

epreproc$heb heb

This means that the extension heb is assigned to the preprocessor heb. Well, this is a
stupid example because the extension is the same as the symbolic name of the preprocessor,
but usually this is the convention. The extension stands after the $ sign and the symbolic
name of the preprocessor is the value of the configuration line. Thus

Chapter 9: General Language Format 63

epreproc$extension preprocessor_symbolic_name

You can assign the same preprocessor to many extensions, for example:
epreproc$heb heb
epreproc$htb heb
epreproc$hb heb

can exist in the same configuration file. Whenever ScriptBasic processes a source file
with the extension hb it will start the HEB external preprocessor.

A file may have multiple extensions. These are worked up from left to right. For example
the command:

scriba sample.heb.sql.bas

will start ScriptBasic starting first the preprocessor assigned to the extension heb, then
the preprocessor assigned to the extension sql and finally the preprocessor assigned to
the extension bas. If there is no preprocessor assigned to some of the extensions then they
eventually will not be executed. This is not an error. (Note that there is no sql preprocessor
currently for ScriptBasic, this is an artificial example.)

This behavior lets you to chain preprocessors.
External preprocessors have to be configured. You have to tell ScriptBasic what program

to use for the specific preprocessing. To do this you have to use the configuration line:
eprepexeheb /usr/bin/scriba heber.bas

This configuration line tells ScriptBasic that the executable of the preprocessor having
the symbolic name heb is scriba heber.bas. This is not actually the name of an executable.
This is the start of the command line. The first element of it should be the name of the
executable. The next elements are the command line options that precede the input and
the output file name. Using this configuration line ScriptBasic will start another issue of
ScriptBasic with the command line:

#/usr/bin/scriba heber.bas sample.heb.bas outputfile

where sample.heb.bas is the HTML embedded BASIC code we actually want to exe-
cute; ‘outputfile’ is the file that the preprocessor has to create. When this process finishes
ScriptBasic reads the generated output and executes the program.

Of course you can use any other executable as preprocessors. You can write preprocessors
in C, C++, Perl or in any other language that can be started on the command line, is capable
reading and writing file and is able to signal error via exit code. Note that ScriptBasic exists
with the last non caught error code.

Before ScriptBasic is able to start the external preprocessor it has to calculate the name
of the output file that the preprocessor has to write. Each preprocessor has to be configured
to use a temporary directory to store the preprocessed file. To specify the directory you
have to use the configuration line:

eprepdirheb /etc/temp/heb/

This means that the temporary directory for the files created by the preprocessor with the
symbolic name "heb" is the directory ‘/etc/temp/heb/’. When a file is to be preprocessed
with this preprocessor ScriptBasic calculates a unique file name based on the name of the
source file and asks the external preprocessor to put the result into that file in this directory.
Finally the command line that ScriptBasic starts for the example above is:

64 ScriptBasic Users Guide

#/usr/bin/scriba heber.bas sample.heb.bas /etc/temp/heb/EACAPAOALAEAHAHAAANAJAOALAGAKAPA

The algorithm used to calculate the unique file name is the same as for the cache file
name.

9.17 #! /usr/bin/scriba

Your basic program may contain a first line that looks like the title of this section.
This may seem strange for Windows users, but this is usual in UNIX. On UNIX systems
such a first line tells the operating system, which program to use to execute the program.
This is usually /usr/bin/scriba on UNIX systems, but it is not a must The ScriptBasic
interpreter may be in a different location or may have different name.

When the interpreter starts the program it sees this first line and ignores it. To ease life
of ScriptBasic users this kind of first line is ignored on Windows systems.

9.18 @goto start

Your basic program may contain a first line that looks like the title of this section. This
may seem strange for UNIX users, but this is usual under Windows. On Windows systems
such a first line is used to transfer the execution of the Windows command interpreter to
the end of the command file, where the interpreter is invoked for the same file.

This looks like:
@goto start

scriptbasic program lines

rem """
:start
@echo off
scriba %0 %1 %2 %3 %4 %5 %6 %7 %8 %9
rem """

assuming that scriba is in the path this file named something xxxx.cmd can be started
from the command line and will execute the BASIC program. The first line is ignored
by the ScriptBasic interpreter, but the Windows command processor will jump to the
line containing :start. On this line the ScriptBasic interpreter is started and reads and
interprets the lines. The first line is ignored by ScriptBasic, the last few lines are comment
at least for ScriptBasic.

To ease portability such a first line is ignored when executing a BASIC program under
UNIX.

9.19 #!/@goto

After the previous two sections here is a small trick that allows you to have a ScriptBasic
program that can be executed under UNIX as well as under Windows just typing the name
of the BASIC program file and without any modification.

Chapter 9: General Language Format 65

#! /usr/bin/scriba
goto start
start:

scriptbasic program lines

rem """
:start
@echo off
scriba %0 %1 %2 %3 %4 %5 %6 %7 %8 %9
rem """

Unfortunately under Windows NT the command interpreter will complain about the
very first line. However in addition to that there is no other issue.

66 ScriptBasic Users Guide

Chapter 10: Interacting with the user 67

10 Interacting with the user

Although this topic is detailed elsewhere we present a short introduction here, because
of its importance. Interacting with the user is the most important action a program takes.
There are many ways to do it, but the most frequently used is printing to the screen and
reading from the keyboard and interpreting command line arguments. To do this ScriptBasic
has the command print and the command line input.

10.1 Print

The print statement can either print to a file or to the standard output, which is usually
the terminal window. If no file number is specified after the keyword the statement print
prints to the screen. It takes a list of expressions, formats them and prints the values to
the screen.

print "haho!"
print "hahaho!"
print
print "kukac\n"
print "oooh"
print "The number is ",number

The list of expression is one or more expressions separated by commas. Old implemen-
tations of the BASIC language used ; for that and inserted a space between the printed
item. These old BASIC languages used the comma as list separator to put the next printed
item on the next tab position. There is nothing like that in ScriptBasic. The comma sim-
ply separates the list elements, which are printed adjacent. Comma does not insert space
between them and does not position on tab. ; as list separator is not allowed.

In case you want to position something in tab position you can
print "hello\ttab"

use the \t escaped character.

10.2 Input

ScriptBasic has the usual input statement, however a slightly different from other BASIC
implementations. Input statement in other basic languages reads the keyboard and puts a
string, real or integer number into the variable depending on the type of the variable. In
ScriptBasic there is no type of the variables, any variable can hold any type of value. Thus
the input statement can not know if the input is to be read as integer, real or character
string as typed.

Because of this ScriptBasic reads the characters as typed into the variable on the input
statement as string. Because this is the usual behavior of the BASIC languages for the
command line input ScriptBasic also names this statement LINE INPUT.

This command reads a whole line from the file specified after the # sign or from the
standard input if no file number was specified. The string read is put into the variables
listed on the command. Each variable gets a line including the line terminating new line
character.

68 ScriptBasic Users Guide

print "Give me a line:"
line input a
print "This is a=",a,"This was a\n"

To remove the new line from the end of the read string you can use the function chomp.

10.3 Handling command line arguments

Though the command line is parsed by the interpreter up to the name of the executable
basic program name and all other command line options and arguments are passed to the
basic program to handle. To access this part of the command line the basic program should
use the function command(). This function does not need any argument and returns a string
containing the command line arguments.

In the variation STANDARD the command line returned by the function command()
contains the parameters separated by a single space. Even if the real command line contains
multiple spaces or tabs between the parameters it is converted to a list of parameters
separated by single space.

’ This program demonstrates the command function
’ start the program using the command line:
’ scriba commandline.bas a b c d e f
’
print "The command line was:\n",command(),"\n"

will print
The command line was:
a b c d e f

Chapter 11: Name spaces 69

11 Name spaces

ScriptBasic does not have real name spaces to separate modules from each other. There
are no such things as public and private variables of modules or classes. Whenever you
develop a module you have to trust the programmer using the module that he or she
will use the module in the way it is intended and the way you hopefully documented. A
programmer should not use the internal variables of a module not because he can not but
because he is supposed not to.

ScriptBasic name spaces only help the programmers to avoid accidental name collisions.
When you develop a module you start it saying

MODULE MyModule

After this line until the end of the module which is noted by the line
END MODULE

will belong to the specific module and all global variables will belong to that module.
However all these module and name space handling is done on low level altering the

names of the variables and functions. When you start to write a program and you write:
A = 3
print A

you actually use the variable main::A. This is because the default name space is main,
and if there is no name space defined in a variable its name is altered so that the variable
will belong to the current name space. The default name space is called main. Try the
following:

A = 3
print main::A

It prints 3. Surprising? Try the following:
A=5
module boo
A=3
print main::A
end module

It will print 5. This is because main::A is 5, boo::A is 3 and the variable name main::A is
not converted to boo::main::A, because it is explicitly denoted to belong to the name space
main.

Name spaces can be nested. You can write:
A=1
module boo
A= 2
module boo::baa
A= 3
print A
print boo::A
print main::A
end module
end module

70 ScriptBasic Users Guide

which will print 321.
To ease the nesting of modules you can write the same code as

A=1
module boo
A= 2
module ::baa
A= 3
print A
print _::A
print main::A
end module
end module

When the module name in the module declaration starts with double colon ScriptBasic
knows that the module is to be nested into the current module. The variable name ::A
means: the variable A of the surrounding name space. This is the same as the operating
system directories. You can think of name spaces as directories and variables as files.
Whenever you write

../../mydir/file.c

a similar construct may say
::::mynamespace::variable

When the parser sees the end module statement it always returns to the previous name
space. You can start and close modules many times, ScriptBasic will not complain that the
module was already defined. You can even totally neglect the module statement and you
can write the above program as

main::A=1
boo::A= 2

boo::baa::A= 3
print boo::baa::A
print boo::A
print main::A

This is a bit less readable. Name spaces can serve another purpose. See the following
code:

string = "AF"
hex = 0
while string <> ""
chr = mid(string,1,1)
string = mid(string,2)
hex = hex*16 + asc(chr) - asc("A")
wend
print hex

when you try to compile you will probably get many errors. Why? Because string, chr
and hex are predefined functions and can not be used as variable names. What to do then?
You can use them as variable names when you specify that they are variables:

Chapter 11: Name spaces 71

::string = "AF"
::hex = 0
while ::string <> ""
::chr = mid(::string,1,1)
::string = mid(::string,2)
::hex = ::hex*16 + asc(::chr) - asc("A")
wend
print ::hex

When you write var::string, ::chr or ::hex ScriptBasic will know that they are variables
belonging to the current name space. This is a bit weird, so you better avoid using function
names and predefined function names as variable names.

72 ScriptBasic Users Guide

Chapter 12: File Handling 73

12 File Handling

Tis chapter discussed how ScriptBasic handles files, how you can open, close, read, write,
delete, create, rename, copy, move files.

12.1 Opening and creating files

ScriptBasic handles the files the same way as any other BASIC type language. You open
a file, read from it, write to it and finally close the file. To make a jumpstart see a simple
example:

open "myfile.txt" for output as 1
print#1,"This is the first line of myfile\n"
close 1

open "myfile.txt" for input as 1
line input #1, a
close 1
print a

This simple program opens the file named ‘myfile.txt’ in the current directory, prints
a single line into it, and closes the file. Next time it opens the file for reading, reads a line
from it, closes the file and prints the line read from the file to the screen.

When you open a file you have to have a file number that you want the file associated
with. In the example above this number is 1. This is called many times the "file number".
Whenever you do something with an opened file you have to use the file number.

There are more things than reading from a file and writing to a file. You can read from
a certain position on a file and you can write to a certain position. You can determine the
length of a file and dates and times the file has, like last time it was accessed, modified or
created.

12.2 Text and binary files

Before going into details we have to talk about the different types of files and the different
ways a file can be opened.

A file is a byte stream for ScriptBasic. You can open a file for reading, writing, or to do
both of these operations without closing and reopening the file. Some operating systems,
like Windows NT, distinguish between text files and binary files. Other operating systems,
like UNIX do not make such a strict distinction.

Text files usually contain lines of text. Binary files may contain any code. When you
open a file that you wan to write textual data into, or you know that the file contains textual
data, you have to use one of the text mode opening. When you want to handle arbitrary
data, use binary type of opening.

Calling a file to be text or binary under Windows NT is not precise. All files are the
same. The differentiation between textual and binary should be set up on the way we use

74 ScriptBasic Users Guide

the files. You can open a text file in binary mode and you can open a binary file in text
mode. A file itself is nor binary neither text. The difference is how we handle them.

Binary files are simple. Bytes follow each other and when we read or write such a file the
operating system reads or writes the bytes as they are without any conversion. Whenever
you want to go to a certain position of a file using the command seek, you can without
problem.

Textual files are a bit different. Whenever you open a file in textual mode and start to
read it, the operating system converts each carriage-return and line-feed character pairs to
a single line feed character. Whenever you write to a file opened in textual mode all line-
feed characters produce two characters in the output file: a carriage-return and a line-feed
character.

Setting the position in a textual file is also tricky. Should we count the bytes in the
file or the bytes we have wrote to the file. They are different. If we have send x pieces of
new-line characters to the file that generated two times x bytes. The safest rule is: do not
position within a text file. Read it from start, write it from start or append to it. The not
so safe rule is position to "non-calculated" position. Your calculation may be erroneous,
but if you position to a value that was reported by the function pos() beforehand, you may
be safe.

UNIX operating systems handle all files in one way that makes life simpler. Text file
lines are separated with a single line-feed character and opening a file in textual mode is
just the same as opening in binary mode. If you write a program for UNIX you need not
worry about textual and binary mode. But this is true only so long as long your program
is running under UNIX. Whenever someone starts to use your program under Windows
he or she may start to report you bugs that did not appear under UNIX. Therefore it is
recommended that you use the appropriate file opening modes under UNIX the same way
you would under Windows NT.

There are five different ways you can open a file. These are
Input

Output

Append

Random

Binary

There is an extra mode called socket that opens connection to a remote machine and
not a file. That will be detailed later.

The first four modes are textual modes. Open a file for input whenever you want to
read data from the file. If you open a file for output you can write to the file. However all
data that was stored in the file is destroyed, and in case the file did not exist it is created.
If you want to write new data to a file still keeping the existing content open the file for
appending to it, using the keyword append.

Random gives a relative freedom to open a file for both reading and writing. When you
open a file using the keyword random, you can both read from the file and write to the file.
You can, for example, read from the file until you find the end of the file and then append
after the current content new lines of text. In another scenario you can read the current
content, seek to the position zero, which means the start of the file and rewrite the existing

Chapter 12: File Handling 75

content. However you should only use the mode random only when you really want to write
the file. Operating system permission may allow you to read a certain file and not to write.
Trying to open the file in mode random will not be successful in that situation and prevent
your program’s ability to read the file content.

The last mode is binary. This opens the file for both reading and writing in binary
mode. You can send any data to the file without conversion and you can position the file
pointer to any position without worry.

All file modes but input create the file for you if it did not exists and all modes but
input create the directory for the file if it did not exist. In other words there is no need
to ensure that the directory exists for a file before opening it using any of the outputting
modes.

The format of the open statement is:
open file for mode as [#] file-number [LEN=record_length]

The parts between the [and] characters are optional.
The ‘file’ is the name of the file to be opened. The mode is one of the keywords above.

The file-number is the number you want to refer to the opened file. This number should
be between 1 and 512 in the current implementation of ScriptBasic. 512 is the maximum
number of concurrently open files in ScriptBasic, unless the underlying operating system
gives a lower limit. The file number should be free to use, in other words no two files can
be opened at a time with the same file number. However if you close a file, the file number
is released and can be used in subsequent open statements.

The # character is optionally allowed before the file number for compatibility reasons
with other BASIC interpreters.

The last optional part specifies the record length in terms of bytes. If this record length
is not defined the file is treated as series of bytes. If the record length is larger than one
the positioning statements count the position and length in records instead of bytes.

12.3 Switching between binary and text mode

binary mode files
Whenever you have opened a file in a mode you may want to switch the mode. You

can not switch between reading and writing mode, but you can switch between binary and
textual mode. To do this there are two commands:

binmode [#] fn

and
textmode [#] fn

The sign # is optional. The argument fn should be the file number of an opened file.
These commands are implemented on the Windows operating system, but can also be used
under UNIX with no effect. The use of these commands under UNIX results more portable
code.

There are two files automatically opened in almost any environment. These are the
standard input and the standard output. You can switch the mode how the program
handles these files using these commands. You can say

76 ScriptBasic Users Guide

Binmode input
Binmode output

to switch the standard input and output to binary mode and also
Textmode input
Textmode output

to switch the standard input and output to text mode. Use of these commands is
extremely useful writing Windows NT cgi programs that output binary data, for example
a png file.

12.4 Getting a free file number

At certain situation you do not know a number which is sure available to be associated
with a file. In that case you can use the function FreeFile() to get a file number usable
in the next open statement.

The following code demonstrates the usage of the function FREEFILE:
fn = FREEFILE
Open "myfile.txt" for input as fn

The first line of the code stores a number in the variable fn, which can be used in the
next line as a file number. You can print out the actual value, store it in one or more
variables.

To be absolutely safe you can also check if there is any available file number. If there is
no available file number then the function FREEFILE returns undef.

fn = FREEFILE
if IsDefined(fn) then

open "myfile.txt" for input as fn
else

’ do whatever you have to do

’ when you can not open the file
end if

There is another way to automatically get the first free file number in an OPEN statement.
In case the file number is specified using a single variable initialized to zero the interpreter

will find automatically the first available file number and will put this value into the variable.
This way you can also write:

fn = 0
ON ERROR GOTO ERROR$FILE$NOT$OPENED
open "myfile.txt" for input as fn

’ do whatever you want with the file

STOP

Chapter 12: File Handling 77

ERROR$FILE$NOT$OPENED:
’ do whatever you have to do
’ when you can not open the file

12.5 Positioning in a file

When you open a file for RANDOM or BINARY access you may want to move inside the file
back and forth before reading or writing data. There are many functions and statements
that help you to move the file pointer. Before going into details, let’s explain what the file
pointer is.

A file is a series of bytes stored on the disk. Whenever you read a byte from a file you do
it from a certain position. The file pointer of the opened file identifies this position. When
you read a line or some bytes from a file the file pointer automatically moves after the last
character of the line. Therefore the next read will go on reading the next available unread
character of the file. The same is true for writing the file. Whenever you write bytes to a
file the file pointer associated with the opened file will move after the last position written.

If the file pointer is positioned after the very last byte of the file reading will result an
end-of-file signal and the function EOF(fn) will be TRUE. If we try to write to the file in the
same situation the length of the file will increase,

To get the actual length of an opened file you have to call the function LOF(fn) that
stands for Length Of File. To get the current position of the file pointer you have to call
the function POS(fn). To position to a certain position of an opened file you have to write:

seek #fn, position

where position is the number of bytes, or records from the start of the file. When you
want to position to the start of the file, you can therefore write either

seek #fn, 0

or

Rewind #fn

Rewind is nothing else than a short form for seek#fn,0 because it is often needed and
is more readable.

The functions LOF and POS return values in terms of records. If there is no record length
specified in the statement open you can treat the return values as counts of bytes. On the
other hand if there is a record length larger than one specified on the statement open these
functions return a value in terms of records. LOF tells you how many records there are in
the file and POS tells you which record the file pointer is positioned in.

You have to be careful interpreting the returned values of these functions with files
opened with record length more than one. LOF tells you how many records there are in the
file actually, but there may be some more bytes after the last complete records. POS tells
you which record the file pointer is positioned in, but it does not guarantee that the file
pointer is positioned on the first byte of the record.

78 ScriptBasic Users Guide

There is a function named FILELEN that gives the length of a file based on the name of
the file. The argument for this function is the name of the file, while the argument of LOF
is the file number of the opened file.

Another difference is that FILELEN returns the size of the file in terms of bytes always
and never in terms of records. This behavior becomes obvious if you recall that record
length is specified when a file is opened and FILELEN works on unopened files.

12.6 Reading and writing files

PRINT #fn
To write into a file you can use the statement print in the form:

PRINT#fn, expression list

This is the same format as the ordinary print statement with the exception that a file
number is specified that references an opened file. The expression list is printed into the
file. If you want to start a new line in the file you can do it in one of two ways. You can
write:

PRINT#fn, "\n"

or
PRINTNL#fn

In the first case the string containing a new line character is printed to the file. In
the second case we wrote a print-new-line command. Note that you can print a new line
character to the screen in three ways:

PRINTNL
PRINT
PRINT "\n"

The second format can not be used to print a new line into a file, the command
PRINT#fn

is syntactically incorrect. This is a restriction caused by the parser that ScriptBasic is
built on. Later versions may allow this format.

To read from a file you have a statement and a function. The statement
LINE INPUT #fn, variable

will read a line from the file. The length of the line is not limited except that there
should be enough memory. This statement will result a string in the variable that contains
the line including the line terminating new line unless the line is terminated by the end of
the file without closing new-line character.

For binary files that are not composed of lines the function input() should be used.
This function reads from a file the given number of characters or bytes and results a string
that contains the bytes read. It has the format:

Variable = input(NumberOfBytes, fn)

The number of bytes actually read and put into the variable by the function can be
determined using the string function LEN(). If there are less number of bytes or records

Chapter 12: File Handling 79

in the file from the actual file pointer until the end of the file than the required number of
bytes the function results a shorter string containing the available bytes.

12.7 Getting and setting the current working directory

When a program runs under the UNIX or the Windows NT operating system there is a
directory where the program is started. This directory is not necessarily the directory where
the executable code is or where the basic program is. Sloppy saying: this is the directory
where the user prompt was when the user typed in the command line starting the program.
This is called the current working directory.

Whenever a file name is specified it can either be an absolute file name or a rela-
tive file name. Relative file names are always relative to the current working directory.
For example the current working directory is ‘/home/pvc/scriba/example’ and the file
name is ‘hello.bas’ then the operating system know that the actual file we refer to is
‘/home/pvc/scriba/example/hello.bas’. If we refer to the file ‘../source/getopt.c’
then the operating system considers the file ‘/home/pvc/scriba/source/getopt.c’. This
is because the ‘..’ directory means : one directory above. This is the same in Windows NT
as well as in any UNIX variant. (OpenVMS is a bit different.)

Using relative file names is easier than using the full path to each and any file name.
ScriptBasic provides a command and a function to handle the working directory. The
function curdir has no arguments and returns a string containing the current working
directory path. The command chdir changes the current working directory according to
its argument. For example:

print curdir,"\n"
chdir ".."
print curdir,"\n"

will print

/home/pvc/scriba/examples
/home/pvc/scriba

As argument to chdir you can define any existing directory name as absolute path or
relative to the current working directory. If the directory does not exist or there is some
other condition that prevents the change of the current directory an error occurs.

Note that this command is disabled in the Eszter SB Application Engine variation of
the interpreter and should be disabled in all multi-thread versions. The reason is that the
current working directory is set for all interpreters running in the same process using this
command and may generate failures in other scripts.

12.8 Locking a file

So far we did not consider the case when more than one programs are trying to read or
to write a file. In real life, especially if you write CGI programs this can happen very often.
Assume that you want to count the number of visitors. The CGI program fragment making
the counting can be something like this:

80 ScriptBasic Users Guide

1 Open "counter.txt" for input as 1
2 Line input #1,Counter
3 Close #1
4 Counter = Counter +1
5 Open "counter.txt" for output as 1
6 Print #1, Counter
7 Close #1

At first look there is no problem with this. But at second thought there is. There can
be many CGI processes that run parallel. There is no guarantee that one program finishes
its working before the next one starts. Processes are run parallel, and it means that the
operating system runs a little piece of one process then runs another. Let’s imagine the
following unfortunate, but likely situation.

A CGI process runs the lines 1 to 3 and reads the counter value, let’s say 100. Then the
operating system hangs the running of this process for a while and runs another CGI process
again the lines 1 to 3. This process also reads the counter value which was still not changed
and is still 100. Then the first process gets focus again and it writes the incremented value
101. The second process, whenever it gets its time slice to run writes also the value 101 to
the file. Both hits counted from 100 to 101 instead of one counting from 100 to 101 and the
other from 101 to 102.

What is the solution?
The solution is to lock the file. A file can be locked when it is opened. We open the file

for random access, lock it, read from it, increment, write the incremented value and close
the file. No one else can intercept the file access because the file is locked. How does it look
like in ScriptBasic?

1 Open "counter.txt" for random as 1
2 lock#1,write
2 Line input #1,Counter
3 Counter = Counter +1
4 rewind#1

5 Print #1, Counter
6 Close #1

The command lock does lock the opened file. (Obvious?) The first argument is the file
number of the opened file. The second argument is the locking type. This type currently
can be write, read and release. The meaning of the different types are:

Write The file is locked for writing. Only the locking process can access the file until
the lock is released.
Read The file is locked for reading. Anyone can read the file but no one can write it
until the lock is released.
Release The file lock is released.

If the file is already locked by another process so that the actual locking cannot be
performed the instruction lock waits until the other process releases the file.

The ScriptBasic instruction lock is an advisory lock. It means that it works only if all
programs wanting to access the file use the lock statement before reading or writing the

Chapter 12: File Handling 81

file. If a process locks a file and another process just goes on reading or writing the locking
method may not work. The actual behavior is dependent on the operating system and as
such you have to treat lock working more than advisory as non-guaranteed, or undefined
behavior.

Actually the flock system call is used to implement the lock statement of ScriptBasic.
This type of lock does not prohibit any process to read or write a locked file on UNIX.
On Window NT operating system flock does not exist. The file locking functionality is
implemented using the LockFileEx system call and locking the first 64Kbyte of the file.
This results write and read failure in a process that tries to read or write the first 64Kbyte
of the file and UNIX like behavior if it tries to access the file above the 64Kbyte.

12.9 Locking file range

ScriptBasic provides another type of file locking. This lock locks a range of a file. You
can do it using the statement:

LOCK RANGE #fn FROM start_pos TO end_pos FOR mode

fn is the opened file, start pos and end pos are expressions resulting integer values
meaning the first and the last position of the locking range in terms of records. The
parameter mode is the same as for the file locking mechanism, it can be read, write or
release.

Note that the positioning uses the same zero offset numbering as the instruction seek.
In other words the first record of a file is position 0.

See the following example:
REM locktest1.bas
open "locktest.txt" for output as 1
lock region#1 from 1 to 5 for write

for i=1 to 5
print #1, "A"
next I
print "5 bytes are done\n"

for i=1 to 5
print #1, "B"
next I
print "10 bytes are done first 5 bytes are locked\n"
line input a
close 1

If you run this code in two different terminal windows one will lock the file range and
the other will go on and wait for user input. When you press the key ENTER to go on the
program grabbing the lock closes the file and the program in the other terminal windows
writes out the text and starts to wait. On the other hand if you start ‘locktest1.bas’
in one terminal window and when it starts to wait for user input you start the following
‘locktest2.bas’ in another window, they do not interfere, because they lock different
regions of the file.

82 ScriptBasic Users Guide

REM locktest2.bas
open "locktest.txt" for output as 1
lock region#1 from 6 to 10 for write

seek#1,6
for i=1 to 5
print #1, "D"
next I
print "done\n"
close 1

This locking method implements advisory locking, and the behavior is the same as in the
case of file locking. The interpreter calls the system function fcntl on UNIX systems, and
LockFileEx on Windows NT. This results different behavior when programs try to read or
write a file region locked by another process.

In other words all programs should behave and lock the file or the region before accessing
it.

12.10 Truncating a file

When you write to a file it is automatically extended by the operating system and grows.
On the other hand files do not shrink automatically. When you write into file before the
position of the end of the file the bytes after the written region are still valid and remain
in the file. The exception is when you open a file for output. In that case the original file
is deleted and you can start to write of length zero,

However you may want to open a binary file, read from it, write into it and sometimes
you may want to decrease the size of the file. The instruction truncate does it for you. The
syntax of the instruction is:

truncate#fn,size

Where fn is the opened file number, and size is the new size of the file in terms of records.
The content of the file after the position size-1 is lost. Note that the argument to the
instruction truncate is the desired length of the file, which is the position of the last byte
or record plus one. Positions start with zero offset just like in file positioning statements.

If the specified length is larger than the actual length of the file then the file is elongated
with bytes containing the value zero padded to the end of the file.

12.11 Deleting a file or directory

Using the command truncate you can truncate a file to size zero, but the empty file is
still there. To totally delete a file you have to use the command DELETE. The syntax of the
command is

delete expression

where the expression is the name of the file or directory to be deleted. When issuing
this command to delete a directory the directory should be empty otherwise the command
fails and an error occurs. There is another command with the syntax

Chapter 12: File Handling 83

deltree expression

that deletes a directory even if the directory is not empty. Note that this command is
very dangerous, because it forcefully deletes full directory trees and therefore you have to
use this format of the command with exceptional great care.

12.12 Creating a directory

Although the OPEN statement automatically creates the directory for the file whenever
you want to create a new file you may want to create a directory without creating a file in
it. For the purpose the statement mkdir can be used. The syntax of the command is very
simple:

mkdir expression

The expression should result a string, which is the directory to be created. The command
recursively creates the directories that do not exist by the time the command is executed
and need creation in order to create the final directory. For example you can issue the
command

mkdir "/usr/bin/scriba"

without issuing the commands

mkdir "/usr"
mkdir "/usr/bin"

The directories ‘/usr’ and ‘/usr/bin’ are automatically created in the unlikely case they
did not exist.

The command executes without error if the directory is created or if the directory already
existed. If the directory can not be created an error occurs. The reason for directory creation
failure can be numerous. The most typical is access control prohibiting for the process
directory creation. Another usual problem is when some sub-path of the desired directory
already exists, but is a file. For example we want to create the directory /usr/bin/scriba/exe
and /usr/bin/scriba already exists and is a plain file.

12.13 Setting file parameters

Files usually have parameters in addition to the information contained in the file itself.
Such information is the owner of the file, the group the file belongs to, creation time, modify
time, access time, change time and so on. To set these parameters of a file ScriptBasic
provides the command set file.

The syntax of the command is

set file filename parameter=value

where ‘filename’ is the name of the file for which the parameter is to be set, the
parameter is the name of the parameter to change and value is the desired value of the
parameter.

The parameter can be

84 ScriptBasic Users Guide

Owner to set the owner of the file. This owner is a user of the system identified by
its login name. The owner of a file is usually the person who ran the program that
created the file. The super user or administrator can change the owner of a file passing
the ownership to any other legal user. The use of the command can be different on
Windows NT from UNIX. Windows NT uses different NT domains and user names
can be noted in the form DOMAIN\USER. The owner of a file on a machine belonging to
one domain can be a user from another domain (that the domain the machine belongs
to hopefully trusts). If the user name specified in the command chown contains a \
character (do not forget to use \\ in the strings) the user name is looked up in the
domain specified in the name. If the name does not contain any domain specification
the local user database is used.

CreateTime to set the creation time of a file. The value for the time should be ex-
pressed in terms of seconds since January 1, 1970. 00:00. This is the usual measure
of time on UNIX systems. This parameter does not exist on UNIX operation systems.
UNIX maintains only modification, access time and change time, therefore setting
CreateTime is not possible under UNIX and trying to perform the set file command
for this parameter results error with error code sbErrorNotimp.

ModifyTime to set the last modification time of a file. The value for the time should be
expressed in terms of seconds since January 1, 1970. 00:00. This is the usual measure
of time on UNIX systems.

AccessTime to set the last access time of a file. The value for the time should be
expressed in terms of seconds since January 1, 1970. 00:00. This is the usual measure
of time on UNIX systems.

If the file does not exist or some other condition prevents the successful change of the pa-
rameter the program generates an error with one of the error codes sbErrorSetCreateTime,
sbErrorSetModifyTime, sbErrorSetAccessTime.

Note that Windows NT file system (NTFS) and UNIX operating systems store file time
values in GMT. Do not forget to convert the local time to GMT if needed when changing
some of the file time values. Other file systems, like FAT may store the file times as local
time. Be careful.

12.14 Listing files

Up to know we have discussed instructions and operations that were dealing with files.
To access a file you needed to know the name of the file. Many times the program does not
know the file and needs to get the list of all files in a certain directory. To do this you can
use the commands OPEN DIRECTORY, CLOSE DIRECTORY and the function NextFile.

The command OPEN DIRECTORY opens a directory for getting the list of the file. The
command reads the list of the files and creates an internal list of the files.

The function NextFile can be used to retrieve the files of the directory opened one by
one. When the last file name has been retrieved or when there is no need to retrieve the
remaining file names the command CLOSE DIRECTORY should be used to close the listing.

Chapter 12: File Handling 85

12.14.1 Open directory

The syntax of the command open directory is
OPEN DIRECTORY dir_name PATTERN pattern_value OPTION option_value AS dir_number

The parameter dir_name should be an expression evaluating to a string, which is the
name of the directory for which the listing is needed. It can be absolute path or relative to
the current working directory. It may but need not contain the trailing slash.

The parameter pattern_value should be an expression evaluating to a string. When the
list of the files is gathered this pattern is used to select the files. Only the files matching the
pattern will be included in the list of files. The pattern matching uses the same algorithm
as the operator LIKE. Altering the joker and wild characters for the operator LIKE also
alters the pattern matching mechanism of file selection. The command OPEN DIRECTORY
leaves the pattern matching memory in a non-matched state. In other words the function
JOKER will return the undef value after executing an OPEN DIRECTORY command until the
next LIKE operator is executed.

Pattern matching and selection is done during the execution of the command OPEN
DIRECTORY the other file list handling commands and the function NextFile do not interfere
with the pattern matching.

Pattern matching while building up the list is a time and processor consuming tasks. If
you do not want to perform pattern matching just getting all the file names use value undef
or empty string as pattern value. In either case pattern matching is skipped during file list
build up. Using * to get all files is a bad idea unless your aim to make your CPU generate
heat.

Note that pattern matching can either be case sensitive or insensitive based on the setting
of the option ‘compare’. This option alters the behavior of pattern matching during file list
build up on UNIX systems, but not under Windows. Under Windows NT pattern matching
during file list build up is always case insensitive, no matter how the option ‘compare’ is
set.

The parameter option_value should be an expression evaluating to an integer value.
This value is used to drive the behavior of the command. Each bit of the value has a special
meaning. To set the correct value ScriptBasic predefines several global constants that you
can use. These constants can be used in this value. If more than one constant is needed
you have to use the operator and to connect them. The predefined constants and their
corresponding meanings are:

SbCollectDirectories Collect the directory names as well as file names into the file
list.
SbCollectDots Collect the virtual . and .. directory names into the list.
SbCollectRecursively Collect the files from the directory and from all the directories
below.
SbCollectFullPath The list will contain the full path to the file names. This means
that the file names returned by the function NextFile will contain the directory path
specified in the open directory statement and therefore can be used as argument to file
handling commands and functions.
SbCollectFiles Collect the files. This is the default behavior.

86 ScriptBasic Users Guide

SbSortBySize The files will be sorted by file size.

SbSortByCreateTime The files will be sorted by creation time.

SbSortByAccessTime The files will be sorted by access time.

SbSortByModifyTime The files will be sorted by modify time.

SbSortByName The files will be sorted by name. The name used for sorting will be the
bare file name without any path even if the option bit SbCollectPath is specified.

SbSortByPath The files will be sorted by name including the path. The path is the
relative to the directory, which is currently opened. This sorting option is different from
the value sbSortByName only when the value sbCollectRecursively is also used.

SbSortAscending Sort the file names in ascending order. This is the default behavior.

SbSortDescending Sort the file names in descending order.

SbSortByNone Do not sort. Specify this value if you do not need sorting. In this case
directory opening can be much faster especially for large directories.

The final parameter dir_number should be an expression evaluating to an integer value
between 1 and 512. This number should be used as argument to the function NextFile and
as parameter to the commands CLOSE DIRECTORY and RESET DIRECTORY. If this parameter
is a variable having an integer value zero then the command will alter the value of the
variable assigning a directory number automatically. This is similar to the mechanism
when opening files. There is no FreeDir or any similar function.

If the directory does not exist or is not readable by the program for security or for any
other reason an error occurs.

Note that the number used to open a directory is separate from the numbers used in
opening files. If you use for example the file number 14 to open a file you still can use 14
to open a directory.

File and directory names are collected into a list during the command OPEN DIRECTORY.
Any alteration in the file system like deletion of files, new files, modification of files will be
reflected in the listing only if the directory is closed using the statement CLOSE DIRECTORY
and reopened again using the statement OPEN DIRECTORY.

12.14.2 Function NextFile

When a directory is successfully opened the function NextFile can be used to retrieve
the file names from the list. The argument to this function is an integer number, the
directory number used to open the directory. The function returns a string value. When
the last file name was retrieved the function returns undef.

12.14.3 Function EOD

The function EOD serves for End Of Directory checking. The argument to this function is
the directory number used in the command OPEN DIRECTORY. The result of the function is
TRUE if there are no more files to be returned by the function NextFile and FALSE otherwise.

Chapter 12: File Handling 87

12.14.4 Reset directory

You can use this command to reset the directory listing. The syntax of the command is
RESET DIRECTORY dn

or
RESET DIRECTORY #dn

where dn is the directory number. After executing this command the next call to
NextFile will return the first file in the list and listing starts again.

12.14.5 Close directory

You can use this command to close the directory listing. The syntax of the command is
CLOSE DIRECTORY dn

or
CLOSE DIRECTORY #dn

Using this command you can free the space and resource allocated to the directory
listing. Directory listing may need huge amount of memory in case of recursive listing of
large directory structures. After using this command the directory number dn can be used
again to open another or the same directory.

88 ScriptBasic Users Guide

Chapter 13: Networking 89

13 Networking

13.1 Opening a Socket

Networking in ScriptBasic is very simple. As you can open a file on the local disk you
can open a service on a remote machine and print into it and get characters from it.

When you want to open a file to a service on a remote machine you should specify the
name or the IP number of the remote machine and the port number in the open statement
as a file name and you should open the file with mode socket. For example:

OPEN "www.digital.com:80" FOR socket AS 1

will open a connection to the web server of the machine named wwww.digital.com .
The port number is 80 in this example, which is the usual port of a web server. You can
also write:

open "16.193.50.33:80" for socket as 1

specifying the IP number of the machine. (The IP number listed in this documentation
is an example and may not be the IP number of any server.) After opening a socket you can
print into the channel and read from it using the commands print, printnl, line input
and the function input. To retrieve a simple web page the following sample program can
be used:

on error goto ErrorLabel
open "16.193.50.33:80" for socket as 1
print#1,"GET http://localhost/ HTTP/1.0\n\n"

while not eof(1)
line input#1,a
print a

wend
close 1
stop
ErrorLabel:
print "The web server 16.193.50.33 on port 80 is not reachable\n"

The open statement generates an error in case the remote machine is not reachable or if
the domain name can not be resolved. If the IP number is specified instead of the name of
the remote machine ScriptBasic does not query the DNS system, but tries to connect to the
remote machine immediately. This way you can connect to remote machines a bit faster
but you risk that the machine IP number is changed. A machine is usually identified by
its name. The IP number is a low-level identification that reflects the topological location
of the machine on the Internet. If the host is moved from one service provider to another
or some other technology changes or developments make it necessary the IP number of the
machine is going to change. Therefore it is recommended to use the name of the machine
if possible.

90 ScriptBasic Users Guide

13.2 Getting the host name

ScriptBasic can easily get the name of the host the code is running calling the function
hostname. This function returns the internet name of the host. For example the code
fragment

print hostname,"\n"

prints vphome on my machine.

Chapter 14: String handling commands 91

14 String handling commands

14.1 Split and splita

The commands split and splita split a string into sub-strings. The syntax of the
commands are

SPLIT expression BY expression TO variable_list
SPLITA expression BY expression TO variable

The first expression on the command is the string to split up. The second expression
is the string used to split up the first one. For example

const nl="\n"
split "first,second,third,fourth" by "," to fi,se,th,fo
print fi,nl,se,nl,th,nl,fo

splits the string by the commas and will print

first
second
third
fourth

The resulting sub-strings get into the variables listed after the keyword to. In case of
command SPLITA there is only a single variable after the keyword TO. This variable will
become an array and the elements of the array will hold the sub-strings. The resulting array
will be indexed starting with zero. Thus

splita "first,second,third,fourth" by "," to q
print lbound(q)," ",ubound(q)

will print

0 3

and the sub-strings get into the array q[0], q[1], q[2] and q[3]. In this case the array
will have as many elements as need by the split string. If the string to be split is undef the
result will also be undef. In this case the variable will not become an array, but remain
simple variable holding the value undef.

If there are more variables in a split statement than sub-string the rest of the variables
will become undef.

split "q,w,e" by "," to q,w,e,r,t
print r," ",t

will print

undef undef

If there are less number of variables than sub-strings the last variable will hold the
remaining part of the original string holding the separator strings as well. For example:

92 ScriptBasic Users Guide

split "q,w,e" by "," to q,w
print q,"\n",w,"\n"

will print
q
w,e

This way you can write programs that chop off few elements from a string containing
some kind of list and leave the rest of the string in a variable. For example:

ListVar = "1,2,3,4,5,6,7,8,9,10,55"
while IsDefined(ListVar)
split ListVar by "," to FirstMember,ListVar
print FirstMember,"\n"
wend

will print
1
2
3
4
5
6
7
8
9
10
55

If two separator strings follow each other then the resulting sub-string is empty string.
For example:

splita "1,,2" by "," to q
for i=lbound(q) to ubound(q)
print q[i],"\n"
next i

will print
1

2

However separator strings on the start and on the end of the string are ignored:
splita ",1,2,3," by "," to q
for i=lbound(q) to ubound(q)
print q[i],"\n"
next i

will print
1
2
3

The separator string can be any length, arbitrary string.

Chapter 14: String handling commands 93

After a string is split into sub-string there is a need many times to put the parts together.
To do that the string function JOIN can be used.

14.2 Unpack

The command unpack should be used to split a binary record into variables. A binary
record is a string that contains integer and real numbers and strings inside as sub-strings.
For more information see the detailed documentation of UNPACK in the 〈undefined〉 [Com-
mand reference], page 〈undefined〉.

94 ScriptBasic Users Guide

Chapter 15: Conditional Execution 95

15 Conditional Execution

Conditional execution is a vital point in any programming language. Conditional exe-
cution can be performed using the statement IF. This statement has the following format:

If expression then
’ Code to execute when the
’ expression is true
End if

Or it may have the format:

If expression then
’ Code to execute when the
’ expression is TRUE
Else
’ Code to execute when the
’ expression is FALSE
End if

Or even it may have the format:

If expression then
’ Code to execute when the
’ expression is TRUE

Elseif expression2 then
’ Code to execute when the
’ expression2 is TRUE
End if

And even the format:

If expression then
’ Code to execute when the
’ expression is TRUE
Elseif expression2 then
’ Code to execute when the
’ expression2 is TRUE
Else
’ Code to execute when both
’ expression and expression2 are
’ FALSE.
End if

When closing a conditional execution construct with the keyword ENDIF you can write it
as one word or as two separate words, like END IF. Also you have a great freedom spelling
the keyword ELSEIF. You can use any of the followings: ELSE IF (two words), ELSEIF,
ELSIF or ELIF.

Most BASIC languages have the single line format of the IF statement where the condi-
tionally executed command is on the same line as the command IF and there is no ENDIF
required. You can have the same in ScriptBasic. You can write:

96 ScriptBasic Users Guide

IF expression THEN command

In this case the command is executed only if the expression standing after the keyword
IF is TRUE. Unfortunately you can not have ELSE in this case. If you need the ELSE branch
then use the multi line format of the conditional execution closing the ELSE branch with
ENDIF.

When using the single-line format of the command IF there are some restrictions on the
command that follows. The command executed conditionally can not be any declaration
type command, like Const, Module or Declare Sub and can not be starting or ending a
loop. Finally this command can not be another IF, ELSEIF, ELSE or ENDIF.

Chapter 16: The statement GOTO 97

16 The statement GOTO

The statement GOTO is the most famous statement of all BASIC languages. Many pro-
gram theorists say that you should not ever use GOTO and they may be right. Even so, the
statement GOTO is part of most programming languages and ScriptBasic is no exception.

Using the statement GOTO you can alter the execution order of the statements. GOTO
statements use labels and the labels can identify program lines. The form of a GOTO state-
ment is

GOTO label

where the label is a label, which is defined somewhere in a program.
Labels should stand on the start of a line preceding a command. There are two different

label types in ScriptBasic. One is the conventional BASIC style label, a decimal number.
Any line can contain an unsigned integer as a label at the start of the line. For example
the following code is perfectly legal in ScriptBasic:

10 print "Hello word!!"
20 REM
30 print "This is line 30"

These types of line labels are available in ScriptBasic for compatibility reasons, and there
is no need to label each line in ScriptBasic. The numeric labels can be present in any order
and need not increase. This is not compatible with old BASIC languages, but there is little
need for that. In those days these numbers were needed to help the simple built-in editor to
sort lines and to allow the programmer to insert in new lines. (Did you program those days
when the ZX80, ZX Sinclair Spectrum, Atari 800XL, Commodore, Enterprise computers
were on top?) If you use these numeric labels the lines will be executed in the order as they
appear in the source file and not necessarily in increasing label order.

The type of label, which is more modern and lets the programmer to write more readable
and as such easy to maintain programs are the alphanumeric labels. These labels follow the
syntax of any identifier of ScriptBasic, stand on the start of the line and are followed by a
colon. Both numeric labels and alphanumeric labels can be used in GOTO statements.

10 print "hah"
line input a
if a = "n\n" then
goto finish

end if
goto 10

finish:
REM this is the end of the program

This program loops printing three characters and waiting for input after each print so
long as long the user types a single n character. When the user types the n character the
program executes the statement GOTO to jump onto the label finish.

The labels are subject to name space modifications as any other variable or user defined
function names as described in the section See 〈undefined〉 [Name spaces], page 〈undefined〉.

98 ScriptBasic Users Guide

All GOTO instructions should reference a local label. This means that you can not jump
out or jump into a function or subroutine code. You are free to reuse label names once in
each function or subroutine. In other words if you use a label in a function you can use the
same name as a label without worry in another function or subroutine as well as you can
use it in global program code outside of all functions and subroutines once. All these labels
are different ones although all may have the same name.

All the labels are local to the subroutine or function that the label is defined in. This is
implemented in ScriptBasic via name decoration. If you declare a label named MyLabel on a
line ScriptBasic automatically converts it to module::MyLabel’function, where module is
the name of the actual module (this is main if no module is defined); function is the name
of the actual function or subroutine without the current module name. If the label is in the
global program code outside of all functions and subroutines the function name is empty
string. In this case the label has the decorated form module::MyLabel’. The modules
can reference each-others labels using explicit module name notation. However there is no
possibility to reference any label, which is not in the same function or subroutine.

Chapter 17: Loop constructs 99

17 Loop constructs

ScriptBasic has a rich set of looping constructs. If you got used to a special construct
you can have it in ScriptBasic. The looping constructs that ScriptBasic supports are:

While expression
REM loop body
Wend

Repeat the loop body so long as long the expression is TRUE. Do the test before entering
the loop.

Repeat
REM loop body
Until expression

Repeat the loop body so long as long the expression is FALSE. The loop body is executed
at least once and the test is performed after the execution of the loop body.

Do While expression
REM loop body
Loop

This is just another form of the loop while/wend. Repeat the loop body so long as long
the expression is TRUE and do the testing before the loop body execution.

Do Until expression
REM loop body
Loop

Repeat the loop body so long as long the expression is FALSE. Do the testing before the
loop body execution.

Do
REM loop body
Loop While expression

Repeat the loop body so long as long the expression is TRUE. Do the testing after the
loop body execution.

Do
REM loop body
Loop Until expression

Repeat the loop body so long as long the expression is FALSE. Do the testing after the
loop body execution.

FOR variable=StartValue TO EndValue STEP StepValue
REM loop body
NEXT

This loop loads the value of the StartValue into the variable. After the execution of
the loop the variable is increased by the value of StepValue. The StepValue can also be
negative, in which case the value of the variable will decrease. The loop is repeated so long

100 ScriptBasic Users Guide

as long the value reaches or steps over the EndValue. If the StartValue is already over the
EndValue the loop is never executed.

The keyword STEP and the value after the keyword is optional. In this case the step
value is one.

Chapter 18: Functions and Subroutines 101

18 Functions and Subroutines

Most programming languages provide a form for defining code fragments to be used later
at several times. These are subroutines and functions. ScriptBasic allows the programmer
to define subroutines before or after they are used; to have local variables inside functions
and subroutines and allows the functions and subroutines call each other even recursively.

18.1 Declaration of subroutines and function

You can declare a function like
FUNCTION MyFunction(var1, var2, var3)
REM function body
END FUNCTION

You can call the function in any expression, like
A = MyFunction(1,2,3)

Subroutine declaration is almost the same:
SUB MySub(Var1,Var2, Var3)
REM subroutine body
END SUB

You can call the subroutine using the CALL statement:
CALL MySub(1,2,3)

The major difference between functions and subroutines is that subroutines do not have
values returned. However ScriptBasic does not differentiate between functions and subrou-
tines. SUB and FUNCTION are just two keywords that you can use almost interchangeable. A
subroutine can return a value and functions may be called using the call statement, although
this is not recommended.

18.2 Calling functions and subroutines

Functions and subroutines can be called two different ways. One way is to use the
function in an expressions the same way as you would do with the built-in function like
sin, cos or rnd. Calling a function this way you have to use the name of the function and
supply parameters between parentheses.

Another way to call a function or subroutine is to use the call statement. The call
statement has a very simple syntax:

CALL function_name(argument_list)

The function name is the name that stands after the keyword function or sub. The
argument list is a comma-separated list of expressions. When you call a function in a call
statement you can omit the parentheses, which is very convenient when you do not have
arguments. Therefore the following lines are equivalent:

CALL MyFunction
CALL MyFunction()

or

102 ScriptBasic Users Guide

CALL MyFunction 1,2,3
CALL MyFunction(1,2,3)

To ease readability and programmers life you can even omit the keyword CALL if the
function or subroutine was already defined. Therefore you can write:

Sub MyFunction
Print "I am in my function\n"
End sub

MyFunction

On the other hand the following code

MyFunction

Sub MyFunction
Print "I am in my function\n"
End sub

is not valid, because the function is not defined when it is called. In such a situation you
have to use the keyword CALL.

If the function or subroutine has formal arguments you can pass values inside the paren-
theses. Functions and subroutines can have as many arguments as you like and you can
pass as many values as you like. ScriptBasic does not check that the number of actual
values passed as argument is the same as the number formal arguments. If you pass more
arguments than the number of the formal arguments, the last values are calculated and the
result is thrown away. Have a look at the following example:

a = MyFunction(1,2,3)
a = MyFunction(1,2)
a = MyFunction(1,2,3,MyFunction("haha", "hehe","hihi"))
print a
printnl
function MyFunction(a,b,c)
local x

print a,b,c,x

printnl

end function

And the output printed to the screen:

123undef
12undefundef
hahahehehihiundef
123undef
undef

Chapter 18: Functions and Subroutines 103

The lines 1 to 4 are results of a function call. When we call the function the first time
we pass three values to the arguments, which are named a, b and c. The values are printed
correct and the value of the local variable x is undef.

The second time we call the function passing only two arguments. ScriptBasic does not
complain. As we do not pass any value for the argument named c the value of it is undef.

When we call the function third time the argument evaluation calls the function itself
again. Although this is the fourth argument and MyFunction has only four this argument
is evaluated and this result the line 3 in the output. The result of this function call, which
is undef anyway, is not used.

18.3 Returning a value

The example above did not return any value. But functions are to return values. To
return a value from a function the code should perform an assignment that looks very
similar to a normal assignment statement. The difference is that the "variable" that stands
on the left side of the = should be the name of the function. Let’s see the previous example
a bit extended:

a = MyFunction(1,2,MyFunction(1,1,1))
print a
printnl
function MyFunction(a,b,c)
local x

print a,b,c,x
printnl
x = a * b * c
MyFunction = a + b + c

end function

The output is

111undef
123undef
6

The value of the function call is 3 when the function is first executed. This value is
passed to the function call itself as third argument; and is used to calculate the final values
for the variable a.

18.4 Local and global variables

In the example the local variable x is assigned a value, but is never used. Local variables
in ScriptBasic serve the same purpose as in other languages. They are to store values for the
time of function or subroutine execution. They are automatically created when a function
or subroutine starts and vanish as the subroutine or function finishes its task.

104 ScriptBasic Users Guide

Local variables are the only variables that have to be defined in ScriptBasic. If a variable
is not declared as local then ScriptBasic will think that the variable is global. Global
variables keep their values while the program executes. See the following example:

call MySub()
call MySub()
sub MySub
local x

print x," ",y,"\n"
x = 3
y = 4
end sub

The output of the program is:

undef undef
undef 4

The variable y is not defined when the subroutine is called the first time. The variable x
is local and is also not defined. When the program calls the subroutine the second time the
local variable x is freshly created and therefore has no defined value. On the other hand
the global variable has the value assigned to it during the previous subroutine call.

Local variables not only exist to create new local space. They can also help the pro-
grammer to protect global variables. A function or subroutine may use a variable named
ExampleVariable and may alter the value of it. Other parts of the program may use the
same variable without knowing that the variable value changes in the function or subroutine
call. For example the program:

ExampleVariable = 3
call MySub()
print ExampleVariable
sub MySub
ExampleVariable = 5
end sub

prints out the value 5. If we alter the program

ExampleVariable = 3
call MySub()

print ExampleVariable
sub MySub
local ExampleVariable
ExampleVariable = 5

end sub

the output becomes 3. The variable ExampleVariable is local in this second case and it
does not interfere with the global variable of the same name.

Chapter 18: Functions and Subroutines 105

18.5 More on local and global variables

Although ScriptBasic following the good old BASIC conventions implicitly defining all
variables not declared as local to be global inside subroutines and function this is not
always a good approach. This is quite convenient in case of small programs, but may harm
when writing large programs. One programmer may sloppily write a function that uses
the variable I as a loop variable in a FOR loop. This is quite common. Not declaring this
variable to be local is also common. Debugging days finding out why the global variable I
is changing in a code fragment calling a function which is calling a function which is calling
the function containing the loop is also quite common.

As you could see there is a declare option command that requires the programmer to
declare all variables, but it does not solve this problem.

The solution in more modern languages is that all variables inside functions and subrou-
tines are local unless they are explicitly declared to be global. ScriptBasic can also follow
this way. To do this you have to insert the command:

declare option DefaultLocal

This will mean that all variables inside a function or subroutine following this line will
be local unless explicitly declared to be global. This can be used to prevent programming
bugs like the one described above. This will make the

18.6 Parameters passed by value and by reference

When you call a function or subroutine and pass variables as arguments do you pass the
value of the variable or the variable itself. Look at the following simple example:

a = 1
call MySub(a)
print a
sub MySub(x)
x = x + 1
end sub

Will it print 1 or 2? The answer is that it will print 2. ScriptBasic passes the variables
and not the value of the variable whenever possible. If we alter the program a bit and write

a = 1
call MySub(ByVal a)
print a
sub MySub(x)
x = x + 1
end sub

the resulting output will be 1. Here the difference is the use of the operator ByVal. This
operator is an identity operator that does nothing, but this doing nothing is valuable. The
result of this "nothing" is that the passed value becomes an expression and is not a variable
anymore. As such can not be passed by reference only by value the function can not alter
the value of the variable a.

106 ScriptBasic Users Guide

18.7 ByVal command

As you could see the caller can alter the behavior of argument passing forcing the ar-
gument to be passed by value instead of reference. This can also be done inside the called
function or subroutine. To do this the pair of the ByVal operator, the ByVal command, can
be used. The syntax of the command is very simple:

ByVal variable list

The variables listed in the command become all passed by value instead of passed by
reference and can be altered without modifying the caller variable. For example

a = 1
call MySub(a)
print a
sub MySub(x)
ByVal x
x = x + 1
end sub

Will print 1, because the local variable x gets the value of a and not the reference to
a. Note however that this is a command executed by ScriptBasic and is not a declaration.
Therefore

a = 1
call MySub(a)
print a
sub MySub(x)
x = x + 1
ByVal x
X = x + 1
end sub

will print 2. Why? Because the first increment is done on the reference to a, and
therefore a is incremented. After this increment the command ByVal is executed. This
command evaluates the variables listed after it and assigns the values to the variables. The
only effect is that the variables now contain the value copied from the originally referenced
variable and not a reference to the caller variable.

18.8 Calling functions indirectly

Whenever you call a function or subroutine you have to know the name of the subroutine
or function. In some situation programmers want to call a function without knowing the
name of the function. For example you want to write a sorting subroutine that sorts general
elements and the caller should provide a subroutine that makes the comparison. This way
the sorting algorithm can be implemented only once and need not be rewritten each time a
new type of data is to be sorted.

The sorting subroutine gets the comparing function as an argument and calls the function
indirectly. ScriptBasic can not pass functions as arguments to other functions, but it can

Chapter 18: Functions and Subroutines 107

pass integer numbers. The function ADDRESS can be used to convert a function into integer.
The result of the built-in function ADDRESS is an integer number, which is associated inside
the basic code with the function. You can pass this value to the ICALL command or function
as first argument. The ICALL command is the command for indirect subroutine call. The
call

ICALL ADDRESS(MySubroutine()),arg1,arg2,arg3

is equivalent to
CALL MySubroutine(arg1,arg2,arg3)

If you call a function that has return value use can use the ICALL function instead of the
ICALL statement:

A = ICALL(ADDRESS(MyFunction()),arg1,arg2,arg3)

is equivalent to
A = MyFunction(arg1,arg2,arg3)

The real usage of the function ADDRESS and ICALL can be seen in the following example:
sub MySort(sfun,q)
local ThereWasNoChange,SwapVar
repeat
ThereWasNoChange = 1
for i=lbound(q) to ubound(q)-1

if icall(sfun,q[i],q[i+1]) > 0 then
ThereWasNoChange = 0
SwapVar = q[i]
q[i] = q[i+1]
q[i+1] = SwapVar
endif

next i
until ThereWasNoChange

end sub

function IntegerCompare(a,b)
if a < b then
cmp = -1
elseif a = b then
cmp = 0
else
cmp = 1
endif

end function

h[0] = 2
h[1] = 7

108 ScriptBasic Users Guide

h[2] = 1

MySort address(IntegerCompare()) , h

for i=lbound(h) to ubound(h)
print h[i],"\n"
next i

Note that the argument of the function ADDRESS is a function call and not the name of the
function. In other words the argument of the function ADDRESS is the name of the function
and the opening and closing parentheses. ScriptBasic allows variables and functions to
share the same name. ADDRESS is a built-in function just as any other built in function, and
therefore the expression

Address(MySub) THIS IS WRONG!

is syntactically correct. The only problem is that it tries to calculate the address of the
variable MySub, which it can not and results a run-time error. Instead you have to write

Address(MySub())

using the parentheses. In this very special situation the function or subroutine MySub()
will not be invoked, because the built-in function ADDRESS does not start it. The parentheses
needed only to tell the compiler that this is a function and not a variable.

18.9 GOSUB and RETURN

Most basic language implementations contain the commands GOSUB and RETURN. Script-
Basic is no different. This command pair is the old form of subroutine calling that existed
in the basic language before functions and subroutines were invented. When a GOSUB com-
mand is executed there is no new function or subroutine started with local variables and
return value. This is almost the same as executing the command GOTO. You have to specify
where the execution of the code is to be continued using a label and the execution will go
on at that label. The only difference between GOTO and GOSUB is that GOTO forgets where
it jumped to the specified label from. GOSUB on the other hand remembers and whenever
a RETURN command is executed it jumps back to the command following the instruction
GOSUB.

A code fragment started by a GOSUB command can use another GOSUB command any
level deep and the command RETURN will always return to the command line following the
last executed, matching GOSUB. For example:

print 1
gosub sub1
print 5
stop
sub1:
print 2
gosub sub2
print 4

Chapter 18: Functions and Subroutines 109

return
sub2:
print 3
return

will print
12345

When a GOSUB command is executed inside a function or a "real" subroutine that starts
with the command SUB the label following the keyword GOSUB can not be outside the actual
function or subroutine. It is not a must to return from a code segment started with GOSUB.
If there is a GOSUB in the program and the program finishes before reaching the pairing
RETURN the program just finishes normally. This is not an error. Also when a function
or sub finishes before executing a RETURN command for an already executed GOSUB in that
function or sub the execution simply returns to the following command where the function
or sub was called and the unpaired GOSUB return address or addresses are dropped. For
example:

sub sub1
print 3
gosub kukk
print "never printed"
exit sub
kukk:
print 4
end sub

print 1

gosub obenal
print 6
stop
obenal:
print 2
call sub1
print 5
return

will print
123456

110 ScriptBasic Users Guide

Chapter 19: Reference Variables 111

19 Reference Variables

Even if you did not realize, you have already met reference variables in ScriptBasic. These
are variables, which have no values for themselves but rather reference another variable
and whenever they are accessed the other variable is accessed actually (With some few
exceptions, which are cases that help handling reference variables.)

The arguments of functions and subroutines are examples. These variables refer to the
variable that stands in the calling expression. For example:

sub myfunction(a)
a = a + 1

end sub
b = 3
myfunction b

will increase the value of the global variable b, because a references this variable.
This is pretty automatic and there would be no need to devote a special chapter to such

a phenomenon, but there is more. Not only argument variables of functions and subroutines
can be reference variables but any variable using the reference assignment. This is almost
like a normal assignment. The difference in the syntax is that the command starts with
the keyword REF and the right side of the assignment can not be just any expression, but a
variable that the left side is going to reference. For example:

a = 13
REF b = a
b += 1
print a

will print 14 because b is the "same" as a after the REF assignment.
TO BE CONTINUED... ***TODO***

112 ScriptBasic Users Guide

Chapter 20: Pattern matching 113

20 Pattern matching

ScriptBasic provides a simple, yet powerful pattern matching mechanism that eases string
handling. ScriptBasic pattern matching is based on wild card patterns and not regular
expressions. There is an external module called RE that implements regular expression
based pattern matching.

The pattern matching that ScriptBasic provides is simpler and therefore easier to learn
and use. Most programs do not need the power of regular expression match.

20.1 The operator LIKE

Pattern matching in ScriptBasic is similar to the pattern matching that you get used to
on the UNIX or Windows NT command line. The operator LIKE compares a string to a
pattern.

string LIKE pattern

Both string and pattern are expressions that should evaluate to a string. If the pattern
matches the string the result of the operator is TRUE, otherwise the result is FALSE.

The pattern may contain normal characters, wild card characters and joker characters.
The normal characters match themselves. The wild card characters match one or more
characters from the set they are for. The joker characters match one character from the set
they stand for. For example:

"file.txt" like "*.txt" is TRUE
"file0.txt" like "*?.txt" is TRUE
"file.text" like "*.txt" is FALSE

The wild card character * matches a list of characters of any code. The joker character ?
matches a single character of any code. In the first print statement the * character matches
the sub-string file and .txt matches .txt at the end of the string. In the second example
* matches the string file and the joker ? matches the character 0. The wild card character
* is the most general wild card character because it matches one or more of any character.
There are other wild card characters. The character # matches one or more digits, $ matches
one or more alphanumeric characters and finally @ matches one or more alpha characters
(letters).

* all characters

0123456789

$ 0123456789abcdefghijklmnopqrstxyvwzABCDEFGHIJKLMNOPQRSTXYVWZ

@ abcdefghijklmnopqrstxyvwzABCDEFGHIJKLMNOPQRSTXYVWZ

A space in the pattern matches one or more white spaces, but the space is not a regular
wild card character, because it behaves a bit different.

Note that wild card character match ONE or more characters and not zero or more as
in other systems. Joker characters match exactly one character, and there is only one joker
character by default: the character ?, which matches a single character of any code.

114 ScriptBasic Users Guide

20.2 The function JOKER

We can match a string to a pattern, but that is little use, unless we can tell what sub-
string the joker or wildcard characters matched. For the purpose the function JOKER is
available. The argument of this function is an integer number, n starting from 1 and the
result is the sub-string that the last pattern matching operator found to match the n-th
joker or wild card character. For example

Const nl="\n"
if "file.txt" like "*.*" then
print "File=",joker(1)," extension=",joker(2),nl

else

print "did not match"
endif

will print
File=file extension=txt

If the pattern did not match the string or the argument of the function JOKER is zero
or negative, or is larger than the serial number of the last joker or wild card character the
result is undef.

Note that there is no separate function for the wild card character sub-strings and one
for the joker characters. The function JOKER serves all of them counting each from left to
right. The function JOKER does not count, nor return the spaces, because programs usually
are not interested in the number of the spaces that separate the lexical elements matched
by the pattern.

20.3 Escaping wild cards

Sometimes you want a wild card character or joker character to match only itself. For
example you want to match the string "13*52" to the pattern two numbers separated by
a star. The problem is that the star character is a wild card character and therefore "#*#"
matches any string that starts and ends with a digit. But even if that is not a problem
more issues still may arise. A * character matches one or more characters, and therefore
"#*#" will indeed match "13*52". The problem is, when we want to use the sub-strings.

Const nl="\n"
a="13*52" like "#*#"
print joker(1)," ",joker(3),nl
a="13*52" like "#~*#"
print joker(1)," ",joker(2),nl

will print

1 52
13 52

Chapter 20: Pattern matching 115

The first # character matches one character, the * character matches the sub-string "3*"
and the final # matches the number 52. (We will soon explain the details why that is in the
section #refAmbiguous matching.)

The solution is the pattern escape character. The pattern escape character is the tilde
character: ~.

Any character following the ~ character is treated as normal character and is matched
only by itself. This is TRUE for any normal character, for wild card characters; joker char-
acters; for the space and finally for the tilde character itself. The space character following
the tilde character matches exactly one space characters.

Later you will learn that "#*#" may also serve the purpose, when the role of the wild
card character * is changed.

20.4 Ambiguous matching

Pattern matching is not always as simple as it seems to be from the previous examples.
The pattern "*.*" matches files having extension and joker(1) and joker(2) can be used
to retrieve the file name and the extension. What about the file sciba_source.tar.gz?
Will it result

File=scriba_source.tar extension=gz

or

File=scriba_source extension=tar.gz

?

The correct result is the second. Wild card characters implemented in ScriptBasic are
not greedy. They eat up only as many characters as they need. If you need more flexibility
then you have to use the more complex module RE that implements regular expression search
and replace.

20.5 Advanced matching

Up to now we were talking about wild card characters and the joker character defining
what matches what as final rule carved into stone. But these rules are only the default
behavior of these characters and the program can alter the set of characters that a joker or
wild card character matches.

There are 13 characters that can play joker or wild card character role in pattern match-
ing. These are:

* # $? & % ! + / | < >

When the program starts only the first five characters have special meaning the others
are normal characters. To change the role of a character the program has to execute a SET
JOKER or SET WILD command. The syntax of the commands are:

SET JOKER expression TO expression
SET WILD expression TO expression

116 ScriptBasic Users Guide

Both expressions should evaluate to string. The first character of the first string should
be the joker or wild card character and the second string should contain all the characters
that the joker or wild card character matches. The command SET JOKER alters the behavior
of the character to be a joker character matching a single character in the compared string.
The command SET WILD alters the behavior of the character to be a wild card character
matching one or more characters in the compared string. For example if you may want the
& character to match one or more of all hexadecimal characters the program has to execute:

SET WILD "&" TO "0123456789abcdefABCDEF"

If a character is currently a joker of wild card character you can alter it to be a normal
character issuing one of the commands

SET NO JOKER expression
SET NO WILD expression

where expression should evaluate to a string and the first character of the string should
give the character to alter the behavior of.

The two commands are identical, you may always use one or the other; you can use
SET NO JOKER for a character being currently wild card character and vice versa. You can
execute the command even if the character is currently a normal character in the pattern
matching game.

Using the commands now we can see that
Const nl="\n"
Set no wild "*"
a="13*52" like "#*#"
print joker(1)," ",joker(2),nl

will print
13 52

giving the desired result.
If the expression supposed to result the character for which the role and character set is

defined is none of the 13 characters listed above an error occurs.

Chapter 21: Handling run-time errors 117

21 Handling run-time errors

Tao says: Errors happen.
Old programming languages like C handle error conditions returning NULL pointer from

a function, or returning zero, or returning non-zero and applying system specific library
functions, like longjump, setlongjump and alike. Newer programming languages, like C++,
Java invented exception handling.

BASIC is an old language. Indeed it is a very old language. Older than C. But it has
exception handling.

When an error happens during program execution the program execution stops (exit
code is the code of the error or zero on errorless termination) and usually an error message
is printed on the screen. This happens for example when a file can not be opened for
reading, there is not enough memory to perform some operation, an external module can
not be loaded for some reason, a specified file number is out of range and many other events
can cause an error.

A programmer can have two different approaches to avoid program termination caused
by program error. One approach is to check every needed condition before trying to per-
form some action. This is impractical in some cases. The other approach is to tell the
BASIC interpreter what to do instead of terminating the program when some error occurs.
Programmers usually follow a mixed style. Some conditions are easier to check, while other
errors are difficult to avoid.

For example you can not check all the conditions before trying to load a module. To
do that you have to check the BASIC setup, configuration, the existence of the file, the
existence of the functions implemented in the file. It is not possible from basic.

21.1 On error goto

The error handling instructions that ScriptBasic have are the usual and well known ON
ERROR GOTO constructs. The easiest example using this construct is:

ON ERROR GOTO ErrorHappens

ERROR 1

PRINT "This won’t print\n"
ErrorHappens:
PRINT "This is the error message.\n"

END

will print
This is the error message.

The error is caused by the statement error, which artificially generates an error of the
code given on the line after the keyword. The statement ON ERROR GOTO declares where
to continue execution when an error happens. The execution system remembers this and
starts to execute the code after the label, when an error happens.

To switch off the effect of the ON ERROR GOTO statement you can execute a command

118 ScriptBasic Users Guide

ON ERROR GOTO NULL

Note that other BASIC implementations use the label 0 and the form on error goto 0.
However in ScriptBasic this means to jump to the label 0 in case of an error. This label is
completely valid in ScriptBasic though its use is not recommended. The form

ON ERROR GOTO NULL

used in ScriptBasic is more readable and expresses the real meaning not to jump any-
where in case of error, but rather handle the error the normal way.

21.2 Resume

The piece of code executed when an error happens is usually tries to repair the condition
that caused the error. When the reparation is done the program has to resume its normal
operation. To perform it the program can use the statement RESUME. This statement has
three forms.

RESUME

continues the execution at the line that caused the error. In other words the line is
executed again.

RESUME NEXT

continues the execution of the program after the line that caused the error. This means
that the program does not try to execute the line that caused the error. Finally the state-
ment

RESUME label

resumes the program execution at the label specified after the keyword.
The interpreter remembers the resume point when an error occurs. After execution the

statement RESUME this resume point is cleared and the last error code is set to zero. In
other words the execution returns from error correction to normal operation.

Although the statement RESUME clears the last error value, there is another way to clear
this value. You can execute the statement

ERROR 0

This causes an artificial error of code zero, which means no error. This also sets the last
error code to zero meaning no error. Although the statement ERROR 0 seems to nullify an
error this does not switch execution to normal from error correction, because still there is
a resume point remembered.

Executing a resume statement in normal operation, when there is no resume point re-
membered causes an error.

21.3 RESUME

If you know that the program error does not need error code you can use one of the ON
ERROR RESUME statements. These have almost the same effect as the statement ON ERROR
GOTO except that the program execution continues in non-error mode when an error happens.
This means that the program jumps to the location specified by the statement ON ERROR

Chapter 21: Handling run-time errors 119

RESUME, but the error code is zero meaning no error and there is no remembered error
location where a statement RESUME could return.

There are two different forms of the statement ON ERROR RESUME. One is similar to the
statement ON ERROR GOTO specifying a label where to resume execution after the error. This
has the form

ON ERROR RESUME label

The other type has the form

ON ERROR RESUME NEXT

This command tells the interpreter to neglect the erroneous line and continue the op-
eration executing the next line. Although this is a pleasant and easy way handling error,
great care has to be taken. If you use the statement ON ERROR RESUME NEXT in a code an
error may silently be passed. On the other hand if there are more than one errors in the
code the second one will terminate the program execution, because the first error switches
off the effect of the statement ON ERROR RESUME NEXT.

The code executing the error correction code can access the error code. The code of the
last error happened is returned by the function ERROR(). This function has no argument
and returns an integer value, which is the error code. In normal operation, outside of error
correction code the value of this function is zero.

21.4 Levels of error handling

The error correction code should be simple and carefully designed. If an error happens
while executing the error correction code the interpreter will terminate the program code
or at least will go up to the next level of exception handling.

When the interpreter executes a jump to the error correction code caused by an error
the ON ERROR GOTO functionality is switched off automatically until a new ON ERROR GOTO
instruction is executed. This is done to prevent infinite looping caused by errors in the
error correction code. The error correction code therefore usually executes an ON ERROR
GOTO statement pointing to the start of the error correction code itself immediately before
the execution the statement RESUME.

At the same time an error correction code can not have its own error correction code. If
an error correction code uses the ON ERROR GOTO statement to specify its own error correction
code it looses the resume point when an error occurs. In other words the remembered point
of code where to resume after error correction is always the statement where the last error
occurred. There is only a single resume point during execution and there is no stack of
resume points.

The error handling statements use labels. Labels in ScriptBasic are local. You can not
refer to a label in a function or subroutine from outside and vice versa. There is no need to
do so with the error handling functions as well. The issue is that the jumping instruction
is executed some time after the label was used.

What happens when an statement ON ERROR GOTO is used in function X and the error
happens in function Y called from function X. Will the code jump from one function to the
other?

120 ScriptBasic Users Guide

sub X
on error goto ErrorLabel
print "starting sub Y\n"
call Y
print "sub Y returned\n"
exit sub
ErrorLabel:
print "an error occurred while executing Y\n"
end sub

sub Y

error 1
end sub

call X
end

will print
starting sub Y
an error occurred while executing Y

The answer seems to be yes, but the case is not so simple. When the error occurs
the interpreter sees that there is no ON ERROR GOTO statement currently in effect in the
subroutine Y. Therefore it handles the error and terminates the execution of the subroutine
Y. The subroutine returns and the error is inherited to the statement CALL invoking Y. The
interpreter gets into the error condition again and now, at this level of execution there is
an effective ON ERROR GOTO statement, which is executed.

To see that this really happens this way see the following example:
sub X
on error goto ErrorLabel
print "starting sub Y\n"
call Y
print "sub Y returned\n"
exit sub
ErrorLabel:
print "an error occurred while executing Y\n"
Flag = 0
Resume
end sub

sub Y
print "Y started\n"
if Flag = 1 Then
error 1

end if
print "Y finishes\n"
end sub

Chapter 21: Handling run-time errors 121

Flag = 1

call X
end

will print
starting sub Y
Y started
an error occurred while executing Y
Y started
Y finishes
sub Y returned

In this code the subroutine Y causes error if the global variable Flag is 1. The error
correction code sets this variable to zero and corrects the error with this action. After
resuming the execution the code continues at the subroutine call and not at the error
statement. This shows that the error condition does not jump out of the function. It
rather terminates the function and propagates the error code up to the caller until the main
program level is reached and program execution is terminated or there is an effective ON
ERROR GOTO or ON ERROR RESUME statement.

When an ON ERROR GOTO/RESUME statement is executed it overrides the settings of the
previously executed ON ERROR GOTO/RESUME statement, which is in effect. But it does not
override the settings of any higher level settings, because those are not currently in effect and
the settings are restored when the program returns from the actual function or subroutine.
For example:

Global const nl ="\n"
sub ErrorSub
on error goto ErrorLabel
error 1
print "No error has occurred in the function. Weird.\n"
goto FinishLabel

ErrorLabel:
print "An error has occurred inside the sub\n"
print "and now generating another error, which is not

handled by the subroutine.\n"
error 2

FinishLabel:

end sub

on error goto ErrorLabel

call ErrorSub

print "No error"
goto FinishLabel

122 ScriptBasic Users Guide

ErrorLabel:
print "Error code: ",error(),nl

FinishLabel:
end

will print
An error has occurred inside the sub

and now generating another error, which is not

handled by the subroutine.

Error code: 2

Note that the ON ERROR GOTO setting of the module outside the subroutine remained
valid although another ON ERROR GOTO setting was issued inside the subroutine.

21.5 Error codes

When an error happens the error code can be retrieved using the function ERROR() in
the error handling code. This value is an integer value. To compare this value against a
specific error code the program should include the file ‘error.bas’. This file defines global
constants for each run time error. It is advised to use these symbolic constants because
there is no guarantee that the actual value of an error code remains the same between
builds. The file ‘error.bas’ is generated automatically when the interpreter C language
constants are generated. The file also contains the English language explanation of each
error following the line that defines the global constant for the error code.

Chapter 22: Setting options 123

22 Setting options

ScriptBasic implements many features, operators, functions, and statements. The devel-
opers defined the behavior of a statement, function or operator. For example ScriptBasic
has an equality test operator like any other language. This is the well know = sign that
result TRUE if the two values compared are equal and FALSE otherwise. This is simple when
the values are integer or real values. But what about strings? Should strings be compared
case sensitive or case insensitive? Should the developers of ScriptBasic decide instead of
you? Not at all.

The statement option allows the programmer to alter the behavior of certain features.
For example you can say

OPTION COMPARE sbCaseInsensitive

and string comparison as well as pattern matching becomes case insensitive when the
line is executed. To switch it to case sensitive the programmer can write

OPTION COMPARE sbCaseSensitive

and comparison is case sensitive again. Note that the option statement alters the be-
havior of the feature globally. No matter where the option statement is executed. It can be
inside a function, somewhere in a module: it alters the feature for the program execution
at top level.

The syntax of the instruction is:
OPTION symbol expression

symbol is any symbol that an instruction is looking at. Expression should result an
integer value. Options are always integer values.

Also note that there is no checking if you misspell the symbol name. If you write
OPTION COMPARA sbCaseInsensitive

the statement will execute without error. It will set the option for the symbol COMPARA
instead of COMPARE and the statement does not ever know that there is no one interested
in the value associated with COMPARA. Option values are available for commands as well as
for external modules.

You can set the value of the option RaiseMathError. This will alter the behavior of
certain mathematical operators and mathematical functions. When an operator gets an
operand or a functions and argument that is out of the scope of the operation or function it
returns undef by default. In many cases this is inconvenient and error prone, because this
way errors may propagate further. Using this option these operators alter their behavior.
There are three constants that the programmer can use to alter argument handling:

sbMathErrDiv will result error when dividing with zero (division, integer division and
modulo calculation.
sbMathErrUndef will result error when a mathematical operator gets undef as argu-
ment.
sbMathErrUndefCompare will result error when a comparison is done against undef.

These values can be joined together using the bit operator OR, for example
OPTION RaiseMathError sbMathErrDiv OR sbMathErrUndef

means that ScriptBasic will raise error when division with zero occurs or a mathematical
operator gets undef as argument.

124 ScriptBasic Users Guide

Chapter 23: Other miscellaneous commands 125

23 Other miscellaneous commands

23.1 Sleep

The sleep command causes the basic program to stop and wait for a few seconds. The
number of seconds is given as argument. The syntax of the command is very simple:

SLEEP expression

The expression specifies the number of seconds to sleep. This is the only effective way
to insert delay into the code. Old style waiting constructs, like empty for loops consume
processor and are not precise. The command sleep calls the system function sleep (Sleep
on Windows NT) and this allows other processes to get processor time while the basic
program is sleeping.

Because nor UNIX operating systems neither Windows NT or Windows95/98 are real
time systems there is no guarantee that the basic program is going to run immediately after
the specified number of seconds has elapsed.

Because of system limitations the time to sleep should not be more than 2,147,483
seconds. This is approximately 24 days. If you need more you can create a loop around the
sleep statement and call it many times. This wastes a bit of CPU but not too much. If the
argument to the command sleep exceeds this limit the result is unknown.

To test the functionality of the command SLEEP run the following program:

for i=1 to 20
print i
print
sleep 1
next i

126 ScriptBasic Users Guide

Chapter 24: Using External modules 127

24 Using External modules

External modules are ScriptBasic extensions that are written in C and compiled to
dynamic load libraries. ScriptBasic is capable loading these libraries and the functions
implemented in the module become callable from Basic.

The line
DECLARE SUB basfun ALIAS "cfun" LIB "dlllib"

declares that the function basfun is implemented in an external library named dlllib.
The name of the function that implements the library is called cfun. In your basic program
you can call this function the same way as any other user-defined function or subroutine:

call basfun(arg1,arg2,...,argn)

or
a$ = basfun(arg1,arg2,...,argn)

The function name cfun is the name of the function as the dll or so object file exports
it. The last string gives the name of object file. In the example above it is dlllib.

The dll object file name can be specified as an absolute file name or as a relative name.
If the string specifies an absolute file name ScriptBasic tries to load the specified dll file.
In this case the basic program has to specify the full path, the name of the file and the
extension. If the name of the library file is a relative name it should not contain the path,
or the extension. In this case ScriptBasic appends the default file extension for dynamic
load libraries and tries to locate the files in the configured module libraries. The default
file extension for dynamic load libraries and the module library directories are defined in
the configuration file.

In case ScriptBasic can not fid the module in the module directories specified in the
configuration file it tries under Windows to find the module dll in the same directory
where the executable scriba.exe is and finally in the directory ..\modules relative to
the directory of the executable scriba.exe. For example if the installation directory for
ScriptBasic is

C:\ScriptBasic

the default location of the executable is
C:\ScriptBasic\bin\scriba.exe

In this case
C:\ScriptBasic\bin\dlllib.dll and
C:\ScriptBasic\modules\dlllib.dll

are also tried. This allows you to start ScriptBasic programs without tedious installation
procedures, editing the registry or setting up complex configuration file.

ScriptBasic is NOT capable calling arbitrary external functions implemented in a dll file.
The functions should be implemented according to the calling conventions and parameter
passing methods that ScriptBasic supports. External modules usually come with the appro-
priate basic include file that you should include into your basic program. The included files
usually contain all the external function declarations and your job is to use the functions.

128 ScriptBasic Users Guide

Chapter 25: Command reference 129

25 Command reference

25.1 ABS

Returns the absolute value of the argument. If the argument is a string then it first
converts it to integer or real value. The return value is integer or real value depending on
the argument.

ABS(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

25.2 ACOS

Calculates the arcus cosine of the argument, which is the inverse of the function See
〈undefined〉 [COS], page 〈undefined〉. If the argument is not between (-1.0,+1.0) the return
value is undef.

If the result is within the range of an integer value on the actual architecture then the
result is returned as an integer, otherwise it is returned as a real value.

ACOS(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

25.3 ACOSECANT

This is a planned function to calculate the arcus cosecant of the argument.

25.4 ACTAN

This is a planned function to calculate the arcus cotangent of the argument.

25.5 ADDDAY

This function takes two arguments. The first argument is a time value, the second is
an integer value. The function increments the day by the second argument and returns the
time value for the same hour and minute but some days later or sooner in case the second
argument is negative.

This function is very simple from the arithmetic’s point of view, because it simply adds
86400 times the second argument to the first argument and returns the result.

130 ScriptBasic Users Guide

25.6 ADDHOUR

This function takes two arguments. The first argument is a time value, the second is
an integer value. The function increments the hours by the second argument and returns
the time value for the same minute and seconds but some hours later or sooner in case the
second argument is negative.

This function is very simple from the arithmetic’s point of view, because it simply adds
3600 times the second argument to the first argument and returns the result.

25.7 ADDMINUTE

This function takes two arguments. The first argument is a time value, the second is an
integer value. The function increments the minutes by the second argument and returns
the time value for the same seconds but some minutes later or sooner in case the second
argument is negative.

This function is very simple from the arithmetic’s point of view, because it simply adds
60 times the second argument to the first argument and returns the result.

25.8 ADDMONTH

This function takes two arguments. The first argument is a time value, the second is an
integer value. The function increments the month by the second argument and returns the
time value for the same day, hour and minute but some months later or sooner in case the
second argument is negative.

If the resulting value is on a day that does not exist on the result month then the day
part of the result is decreased. For example:

print FormatTime("MONTH DAY, YEAR",AddMonth(TimeValue(2000,03,31),1))

will print
April 30, 2000

25.9 ADDRESS(myFunc())

Return the entry point of a function or subroutine. The returned value is to be used
solely in a corresponding See 〈undefined〉 [ICALL], page 〈undefined〉.

The returned value is an integer value that is the internal node number of the compiled
code where the function starts. The different node numbers are in complex relation with
each other and simple rules can not be applied. In other words playing around with the
value returned by the function ADDRESS and then using it in an ICALL may result interpreter
crash raising internal error.

Note that in the argument of the function ADDRESS the function name has to include the
() characters. The function is NOT called by the code when the function ADDRESS is used.
On the other hand forgetting the opening and closing parentheses will result erroneous value
unusable by ICALL.

Chapter 25: Command reference 131

25.10 ADDSECOND

This function takes two arguments. The first argument is a time value, the second is
an integer value. The function increments the seconds by the second argument and returns
the time value.

This function is the simplest from the arithmetic’s point of view, because it simply adds
the second argument to the first argument and returns the result.

25.11 ADDWEEK

This function takes two arguments. The first argument is a time value, the second is an
integer value. The function increments the week by the second argument and returns the
time value for the same hour and minute but some weeks later or sooner in case the second
argument is negative.

This function is very simple from the arithmetic’s point of view, because it simply adds
604800 times the second argument to the first argument and returns the result.

25.12 ADDYEAR

This function takes two arguments. The first argument is a time value, the second is an
integer value. The function increments the year of the time value by the second argument
and returns the time value for the same month, day, hour and minute but some years later
or sooner in case the second argument is negative.

This is a bit more complex than just adding 365*24*60*60 to the value, because leap-
years are longer and in case you add several years to the time value you should consider
adding these longer years extra days. This is calculated correct in this function.

If the original time value is February 29 on a leap-year and the resulting value is in a
year, which is not leap year the function will return February 28.

Note that because of this correction using the function in a loop is not the same as using
it once. For example:

print AddYear(TimeValue(2000,02,29),4),"\n"
print AddYear(AddYear(TimeValue(2000,02,29),2),2),"\n"

will print two different values.

25.13 ASC(string)

Returns the ASCII code of the first character of the argument string.

25.14 ASECANT

This is a planned function to calculate the arcus secant of the argument.

132 ScriptBasic Users Guide

25.15 ASIN

Calculates the arcus sine of the argument, which is the inverse of the function See 〈unde-
fined〉 [SIN], page 〈undefined〉. If the argument is not between (-1.0,+1.0) the return value
is undef.

If the result is within the range of an integer value on the actual architecture then the
result is returned as an integer, otherwise it is returned as a real value.

ASIN(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

25.16 ATAN

This is a planned function to calculate the arcus tangent of the argument.

25.17 ATN

This is a planned function to calculate the arcus tangent of the argument.

25.18 BIN

This is a planned function to convert the argument number to binary format. (aka.
format as a binary number containing only 0 and 1 characters and return this string)

25.19 BINMODE [# fn] | input | output

Set an opened file handling to binary mode.

The argument is either a file number with which the file was opened or one of keywords
input and output. In the latter case the standard input or output is set.

See also See 〈undefined〉 [TEXTMODE], page 〈undefined〉
Set an opened file handling to binary mode.

The argument is either a file number with which the file was opened or one of keywords
input and output. In the latter case the standard input or output is set.

See also See 〈undefined〉 [TEXTMODE], page 〈undefined〉
Set an opened file handling to binary mode.

The argument is either a file number with which the file was opened or one of keywords
input and output. In the latter case the standard input or output is set.

See also See 〈undefined〉 [TEXTMODE], page 〈undefined〉

Chapter 25: Command reference 133

25.20 CALL subroutine

Use this command to call a subroutine. Subroutines can be called just writing the name
of the already defined subroutine and the arguments. However in situation when the code
calls a function that has not yet been defined the interpreter knows that the command is a
subroutine call from the keyword CALL.

To be safe you can use the keyword before any subroutine call even if the subroutine is
already defined.

Subroutines and functions can be called the same way. ScriptBasic does not make real
distinction between subroutines and functions. However it is recommended that functions
be used as functions using the return value and code segments not returning any value are
implemented and called as subroutine.

25.21 CHDIR directory

Change the current working directory (CWD). This command accepts one argument,
the directory which has to be the CWD after the command is executed. If the CWD can
not be changed to that directory then an error is raised.

Pay careful attention when you use this command in your code. Note that there is only
one CWD for each process and not one for each thread. When an application embeds the
BASIC interpreter in a multi-thread environment, like in the Eszter SB Application Engine
this command may alter the CWD for all the threads.

For this reason the Eszter SB Application Engine switches off this command, raising
error if ever a program executed in the engine calls this command whatever argument is
given.

Thus usually BASIC programs should avoid calling this command unless the programmer
is certain that the BASIC program will only be executed in a single thread environment
(command line).

Change the current working directory (CWD). This command accepts one argument,
the directory which has to be the CWD after the command is executed. If the CWD can
not be changed to that directory then an error is raised.

Pay careful attention when you use this command in your code. Note that there is only
one CWD for each process and not one for each thread. When an application embeds the
BASIC interpreter in a multi-thread environment, like in the Eszter SB Application Engine
this command may alter the CWD for all the threads.

For this reason the Eszter SB Application Engine switches off this command, raising
error if ever a program executed in the engine calls this command whatever argument is
given.

Thus usually BASIC programs should avoid calling this command unless the programmer
is certain that the BASIC program will only be executed in a single thread environment
(command line).

Change the current working directory (CWD). This command accepts one argument,
the directory which has to be the CWD after the command is executed. If the CWD can
not be changed to that directory then an error is raised.

134 ScriptBasic Users Guide

Pay careful attention when you use this command in your code. Note that there is only
one CWD for each process and not one for each thread. When an application embeds the
BASIC interpreter in a multi-thread environment, like in the Eszter SB Application Engine
this command may alter the CWD for all the threads.

For this reason the Eszter SB Application Engine switches off this command, raising
error if ever a program executed in the engine calls this command whatever argument is
given.

Thus usually BASIC programs should avoid calling this command unless the programmer
is certain that the BASIC program will only be executed in a single thread environment
(command line).

25.22 CHOMP()

Remove the trailing new line from the space. If the last character of the string is not
new line then the original stringis returned. This function is useful to remove the trailing
new line character when reading a line from a file using the command See 〈undefined〉
[LINEINPUT], page 〈undefined〉

25.23 CHR(code)

Return a one character string containing a character of ASCII code code.

25.24 CINT

This function is the same as See 〈undefined〉 [INT], page 〈undefined〉 and is present in
ScriptBasic to be more compatible with other BASIC language variants.

25.25 CLOSE [#] fn

Close a previously successfully opened file. The argument of the command is the file
number that was used in the command See 〈undefined〉 [OPEN], page 〈undefined〉 to open
the file.

If the file number is not associated with a successfully opened file then error is raised.
REM open the file to read
open "test.bas" for input as 1
REM close the file
close#1

REM open two files for reading
open "test.bas" for input as 1
open "test.sb" for input as 2

REM close all files
close

Chapter 25: Command reference 135

Close a previously successfully opened file. The argument of the command is the file
number that was used in the command See 〈undefined〉 [OPEN], page 〈undefined〉 to open
the file.

If the file number is not associated with a successfully opened file then error is raised.
You can also use the command without any argument. In this case all currently opened

files and sockets are going to be closed. For those, who want to express this behaviour
this command can be used with the keyword CLOSEALL. Note however that the keyword
CLOSEALL is not a replacement for the keyword CLOSE. You can not close a single file or
socket using the keyword CLOSEALL.

Close a previously successfully opened file. The argument of the command is the file
number that was used in the command See 〈undefined〉 [OPEN], page 〈undefined〉 to open
the file.

If the file number is not associated with a successfully opened file then error is raised.

25.26 CLOSE DIRECTORY [#] dn

Close an opened directory and release all memory that was used by the file list.
See also See 〈undefined〉 [OPENDIR], page 〈undefined〉.
Close an opened directory and release all memory that was used by the file list.
See also See 〈undefined〉 [OPENDIR], page 〈undefined〉.
Close an opened directory and release all memory that was used by the file list.
See also See 〈undefined〉 [OPENDIR], page 〈undefined〉.

25.27 COMMAND()

This function returns the command line arguments of the program in a single string.
This does not include the name of the interpreter and the name of the BASIC program,
only the arguments that are to be passed to the BASIC program. For example the program
started as

scriba test_command.sb arg1 arg2 arg3

will see "arg1 arg2 arg3" string as the return value of the function COMMAND().

25.27.1 COMMANDF Details

You can start the ScriptBasic interpreter several ways. The most evident way is to
specify the interpreter on the command line:

scriba test_command.sb arg1 arg2 arg3

You can also start the program using the name of the program:
test_command.sb arg1 arg2 arg3

This assumes that the script is executable and that the first line is #!/usr/bin/scriba
pointing to the interpreter (UNIX). On Windows the file extension .sb should be associated
with the interpreter. This is done by the ScriptBasic installer. (Also see the note below.)

Under Windows you can also start the code without specifying the extension:

136 ScriptBasic Users Guide

test_command arg1 arg2 arg3

You can have the program compiled to executable and you can start the exe with the
command

test_command arg1 arg2 arg3

where test_command now refers to the executable file. In any of these cases the function
COMMAND returns the string containning the commal line arguments.

NOTE:

Some versions of the installer has a bug that will prevent passing command-line argu-
ments to a BASIC program when it is started on the command by its name. To check
whether your have ScriptBasic corretcly installed try execute the following program:

REM test_command.sb
print COMMAND()

Save the program into the file test_command.sb and type the command:

C:\> test_command arg1 arg2 arg3

If the program prints the arguments, then you are not exposed to this bug. If the
program returns without printing anything but a new line you have installed a ScriptBasic
version that contains this installer bug.

To correct this bug you should start the registry editor and open the key

HKEY_CLASSES_ROOT\ScriptBasic\shell\command

The default value should be

C:\ScriptBasic\BIN\scriba.exe %1

The actual path to the executable may differ from the listed above. If that is the case
you can modify the value to be

C:\ScriptBasic\BIN\scriba.exe %1 %*

You should NOT use the value from this document as listed above, but rather you have
to edit the value and append %* after the original value, because it is likely that you have
a differet installation path of the interpreter.

25.28 Concatenate operator &

This operator concatenates two strings. The resulting string will contain the characters
of the string standing on the left side of the operator followed by the characters of the string
standing on the right hand side of the operator. The ScriptBasic interpreter automatically
allocates the resulting string.

25.29 CONF("conf.key")

This function can be used to retrieve ScriptBasic configuration parameters. This is
rarely needed by general programmers. This is needed only for scripts that maintain the
ScriptBasic setup, for example install a new module copying the files to the appropriate
location.

Chapter 25: Command reference 137

The argument "conf.key" should be the configuration key string. If this key is
not on the top level then the levels should be separated using the dot chatacter, like
conf("preproc.internal.dbg") to get the debugger DLL or SO file.

The return value of the function is the integer, real or string value of the configuration
value. If the key is not defined or if the system manager set the key to be hidden (see later)
then the function will raise an error

(0): error &H8:The argument passed to a module function is out of the
accepted range.

Some of the configuration values are not meant to be readable for the BASIC programs
for security reasons. A typical example is the database connection password. The system
manager can insert extra "dummy" configuration keys that will prevent the BASIC program
to get the actual value of the configuration key. The extra configuration key has to have
the same name as the key to be hidden with a $ sign prepended to it.

For example the MySQL connection named test has the connection password under
the key mysql.connections.test.password. If the key in the compiled configuration file
mysql.connections.test.$password exists then the BASIC function conf() will result
error. The value of this extra key is not taken into account.

The system manager can configure whole configuration branches to be hidden from the
BASIC programs. For example the configuration key mysql.connections.$test defined
with any value will prevent access of BASIC programs to any argument of the connection
named test. Similarly the key mysql.$connections will prevent access to any configura-
tion value of any MySQL connections if defined and finally the key $mysql will stop BASIC
programs to discover any MySQL configuration information if defined.

The current implementation does not examine the actual value of the extra security key.
However later implementations may alter the behaviour of this function based on the value
of the key. To remain compatible with later versions it is recommended that the extra
security key is configured to have the value 1.

25.30 COS

Calculates the cosine of the argument.
If the result is within the range of an integer value on the actual architecture then the

result is returned as an integer, otherwise it is returned as a real value.
COS(undef) is undef or raises an error if the option RaiseMatherror is set in bit

sbMathErrUndef.

25.31 COSECANT

This is a planned function to calculate the cosecant of the argument.

25.32 COTAN

This is a planned function to calculate the cotangent of the argument.

138 ScriptBasic Users Guide

25.33 COTAN2

This is a planned function to calculate the cotangent of the ratio of the two arguments.

25.34 CRYPT(string,salt)

This function returns the encoded DES digest of the string using the salt as it is used
to encrypt passwords under UNIX.

Note that only the first 8 characters of the string are taken into account.

This function returns the encoded DES digest of the string using the salt as it is used
to encrypt passwords under UNIX.

Note that only the first 8 characters of the string are taken into account.

This function returns the encoded DES digest of the string using the salt as it is used
to encrypt passwords under UNIX.

Note that only the first 8 characters of the string are taken into account.

25.35 CURDIR()

=displax CURDIR()

This function does not accept argument and returns the current working directory as a
string. =displax CURDIR()

This function does not accept argument and returns the current working directory as a
string. =displax CURDIR()

This function does not accept argument and returns the current working directory as a
string.

25.36 CVD

This is a planned function to convert the argument string into a real number.

Converts a passed in string "str$" to a double-precision number. The passed string must
be eight (8) bytes or longer. If less than 8 bytes long, an error is generated. If more than 8
bytes long, only the first 8 bytes are used.

25.37 CVI

This is a planned function to convert the argument string into an integer.

Converts a passed in string "str$" to an integer number. The passed string must be two
(2) bytes or longer. If less than 2 bytes long, an error is generated. If more than 2 bytes
long, only the first 2 bytes are used.

Chapter 25: Command reference 139

25.38 CVL

This is a planned function to convert the argument string into an integer.
Converts a passed in string "str$" to a long-integer number. The passed string must be

four (4) bytes or longer. If less than 4 bytes long, an error is generated. If more than 4
bytes long, only the first 4 bytes are used.

25.39 CVS

This is a planned function to convert the argument string into an integer.
Converts a passed in string "str$" to a single precision number. The passed string must

be four (4) bytes or longer. If less than 4 bytes long, an error is generated. If more than 4
bytes long, only the first 4 bytes are used.

25.40 DAY

This function accepts one argument that should express the time in number of seconds
since January 1, 1970 0:00 am and returns the day of the month (1 to 31) value of that
time. If the argument is missing the function uses the actual local time to calculate the day
of the month value. In other words it returns the day value of the actual date.

25.41 DECLARE COMMAND function ALIAS cfun LIB
library

This command is used to declare a command implemented in an external ScriptBasic
library. Do NOT use this command to invoke a function from an external DLL that was
not specifically written for ScriptBasic. When you include module BASIC files that contain
DECLARE COMMAND lines, you can call the functions declared this way as they were entirely
written in BASIC. You use/write a DECLARE COMMAND command if you developed an external
module for ScriptBasic programs in C.

25.41.1 DECLARECOMMAND Details

Declare a command implemented in an external library. Note that library and the
command implemented in it should be specifically written for ScriptBasic. This command
is not able to declare and call just any library function.

The arguments are similar to that of the command DECLARE SUB and the same restric-
tions and conditions apply. Look at the documentation of the command See 〈undefined〉
[DECLARESUB], page 〈undefined〉.

DEVELOPER DETAILS!
This command is used to start an external command defined in a dynamic load library.

Please read the details of the command DECLARE SUB if you did not do up to know before
reading the details of this command.

140 ScriptBasic Users Guide

The major difference between an external function and an external command is that
arguments are passed after they are evaluated to external functions, while arguments are
not evaluated for external commands.

External commands are a bit more tedious to implement. On the other hand external
commands have more freedom handling their arguments. A command is allowed to evaluate
or not to evaluate some of its arguments. It can examine the structure of the expression
passed as argument and evaluate it partially at its wish.

From the BASIC programmer point of view external commands are called the same way
as user defined functions or external functions.

25.42 DECLARE SUB function ALIAS cfun LIB library

This command is used to declare a function implemented in an external ScriptBasic
library. Do NOT use this command to invoke a function from an external DLL that was
not specifically written for ScriptBasic. When you include module BASIC files that contain
DECLARE SUB lines, you can call the functions declared this way as they were entirely written
in BASIC. You use/write a DECLARE SUB command if you developed an external module for
ScriptBasic programs in C.

The difference between DECLARE SUB and DECLARE COMMAND is that the arguments passed
to a function declared using DECLARE SUB evaluates its argument and passes the values to the
C program implementing the function, whereas the functions declared using the command
DECLARE COMMAND starts the function and evaluate the arguments one-by-one when and if
the function implemented in C requests.

This difference is only important when you use expressions in the place of an argument
that itself calls some other functions and has so called side effect. Have a look at the
following code:

import iff.bas

function side_effect()
b = 1 + b
side_effect = b

end function

b = 0
print iff(0,side_effect(),2)
print b

In the example above we use a hipotethical function implemented by a module and
declared in the file iff.bas. This function evaluates the first argument and if that is true
returns the second argument, otherwise it returns the third argument.

If the function iff was implemented as a command and declared accordingly using the
command DECLARE COMMAND and if that module function evaluates only one of the second
and third arguments then the global variable b remains unchanged.

If the function iff was implemented as a function and declared accordingly using the
command DECLARE SUB and then the global variable b is increased.

Chapter 25: Command reference 141

25.42.1 DECLARESUB Details

Declare a function implemented in an external library. Note that library and the function
implemented in it should be specifically written for ScriptBasic. This command is not able
to declare and call just any library function.

The command has three arguments. The argument function is a symbol (a case in-
sensitive string without any space, containing only alphanumeric characters and without
double quotes) , the name of the function as it is going to be used in the BASIC program.
The BASIC programmer is free to choose this function name. The function later can be
used as if it was a BASIC user defined function.

The argument cfun has to be the name of the function as it is defined in the library.
This has to be a constant string value. You can not use any expression here only a constant
string. This is usually the same as the name of the interface function in the C source file.
The programmer writing the module in C has to know this name. If for some reason you
do not happen to know it, but you need to declare the function you may be lucky using the
name that stands in the C source file between parentheses after the macro besFUNCTION.

The last argument is the name of the library. This also has to be a constant string
value. You can not use any expression here but a constant string. This argument has to
specify the name of the library file without the extension and the path where the library is
located. The extension will automatically be appended to the file name and the path will
automatically be prepended to it. The actual extension and the path to be searched for the
library is defined in the ScriptBasic configuration file.

You can also specify the full file name containing the full path to the library as well as
the file extension. In this case the ScriptBasic configuration file data for the module path
and extension is ignored.

DEVELOPER DETAILS!
This command is used to start an external function defined in a dynamic load library.
The dynamically loaded modules are implemented in ScriptBasic via an ordinary com-

mand that has the syntax:
’declare’ ’sub’ * function ’alias’ string ’lib’ string nl

For the compiler it generates a user defined function, which is defined on the line that
contains the declare statement. The execution system will call itself recursively to execute
lines starting at the line where the declare statement is. The command implemented
in this file is executed and unlike the FUNCTION or SUB it immediately tells the execution
system to return after the line was executed.

This command first checks if the line was already executed. On the first execution it
loads the module and gets the address of the function named in the alias string. This entry
point is stored in a struct and next time the function is called by the basic pointer it
does not need to search for the function and for the module. If a function of an already
loaded module is called the program does not reload the module. The program maintains
a linked list with the names of the loaded modules and loads modules only when they are
first referenced.

The modules are loaded using the operating system dll loading function dlopen or
LoadLibrary. These functions search several locations for libraries in case the library is
specified without absolute path name.

142 ScriptBasic Users Guide

The module loader can be fouled if the same library is defined with full path and with
single name in the basic code.

For example, if the commands

declare sub fun2 alias "mefun" lib "libobas"
declare sub fun3 alias "youfun" lib "/usr/lib/scriba/libobas.so"

refer to the same module, the code implemented here thinks that they are different
libraries.

When the module is loaded the code tries to get the function named versmodu and
calls it. This function gets three arguments. The first argument is the interface version
that ScriptBasic supports for the external modules. The second argument is a pointer to
a ZCHAR terminated string that contains the variation of the calling interpreter. Note
that this has to be an 8-character (+1 ZCHAR) string. The third argument is a pointer
to a NULL initialized void * pointer, which is the module pointer. This pointer is stored
by ScriptBasic, and it is guaranteed not been modified. The modules can store "global"
variable information using this pointer. Usually this pointer is not used in this function,
especially because there are no "safe" memory allocation functions available at this point
of execution.

The module should examine the version it gets and it should decide if the interface
version is OK for the module. If the interface version is not known the function should
return 0 and ScriptBasic will interpret this value as a failure to load the module. If the
module does not know if the interface version is good or not it can return the interface
version that it can handle. In this case it is the duty of the interpreter to decide if the
interface version can be provided or not. ScriptBasic will examine the version and in case
it can not handle the version it will generate an error.

This methodology will allow either ScriptBasic to revert its functionality to earlier in-
terface versions in case the higher version interface not only extends the lower version but
is incompatible with the former version. On the other hand a module designed for a higher
version may be loaded and executed by a lower version of ScriptBasic in case the module is
ready to use the lower interface version.

If the function versmodu can not be found in the DLL then ScriptBasic assumes that
the module is ready to accept the current interface version. However such a module should
not generally be written.

Note that the version we are talking about here is neither the version of ScriptBasic nor
the version of the module. This is the version of the interface between the module and
ScriptBasic.

After the version negotiation has been successfully done ScriptBasic tries to get the ad-
dress of the function named bootmodu. If this function exists it is started. This function can
perform all the initializations needed for the module. This function gets all the parameters
that a usual module implemented function except that there are no parameters and the
function should not try to set a result value, because both of these arguments are NULL.

A module function (including bootmodu) is called with four arguments. The four argu-
ments are four pointers.

int my_module_function(pSupportTable pSt,
void **ppModuleInternal,

Chapter 25: Command reference 143

pFixSizeMemoryObject pParameters, // NULL for bootmodu
pFixSizeMemoryObject *pReturnValue) // NULL for bootmodu

The parameter pSt points to a struct that holds the function pointers that the func-
tion can call to reach ScriptBasic functionality. These functions are needed to access the
arguments and to return a value.

The parameter ppModuleInternal is a pointer pointing to a NULL initialized pointer.
This pointer belongs to the module. ScriptBasic guarantees that the value is not modified
during the execution (unless the module itself modifies it). This pointer can be used to
remember the address space allocated by the module for itself. To store permanent values
to remember the state of the module you can either use static variables or this pointer.
However using this pointer and allocating memory to store the values is the preferred
method. The reason for preferring this method is that global variables are global in the
whole process. On the other hand ScriptBasic may run in several threads in a single process
executing several different basic programs. This ppModuleInternal pointer will be unique
for each thread.

Here is the point to discuss a bit the role of bootmodu. Why not to use DllMain under
Windows NT? The reason is in the possibility of threaded execution. DllMain is executed
when the process loads the dll. bootmodu is executed when the basic executor loads the
module. If there are more threads running then DllMain is not started again. Use DllMain
or a similar function under UNIX if you want to initialize some process level data. Use
bootmodu to initialize basic program specific data.

The parameter pParameters is a ScriptBasic array containing the values of the argu-
ments. There is no run-time checking about the number of arguments. This is up to the
module function.

The last parameter is a pointer to a ScriptBasic variable. The initial value of the pointed
pointer is NULL, meaning undef return value. The final return value should be allocated
using the macros defined in basext.h and this pointer should be set to point to the value.
Note however that bootmodu and finimodu should not to try to dereference this variable,
because for both of them the value is NULL.

For further information on how to write module extension functions read the on-line
documentation of basext.c in this source documentation.

A module is unloaded when the basic program execution is finished. There is no basic
code to unload a module. (Why?)

Before the module is unloaded calling one of the operating system functions dlclose or
FreeLibrary the program calls the module function finimodu if it exists. This function
gets all the four pointers (the last two are NULLs) and it can perform all the tasks that the
module has to do clean up.

Note however that the module need not release the memory it allocated using the
besALLOCATE macro defined in the file basext.h (which is generated using headerer.pl
from basext.c). The memory is going to be released afterwards by ScriptBasic automati-
cally.

You can have a look at the source code of modules provided by ScriptBasic, for example
MySQL module, Berkeley DB module, HASH module, MT module and so on.

144 ScriptBasic Users Guide

25.43 DELETE file/directory name

This command deletes a file or an empty> directory. You can not delete a directory
which contains files or subdirectories.

If the file or the directory can not be deleted an error is raised. This may happen for
example if the program trying to delete the file or directory does not have enough permission.

See See 〈undefined〉 [DELTREE], page 〈undefined〉 for a more powerful and dangerous
delete.

This command deletes a file or an empty> directory. You can not delete a directory
which contains files or subdirectories.

If the file or the directory can not be deleted an error is raised. This may happen for
example if the program trying to delete the file or directory does not have enough permission.

See See 〈undefined〉 [DELTREE], page 〈undefined〉 for a more powerful and dangerous
delete.

This command deletes a file or an empty> directory. You can not delete a directory
which contains files or subdirectories.

If the file or the directory can not be deleted an error is raised. This may happen for
example if the program trying to delete the file or directory does not have enough permission.

See See 〈undefined〉 [DELTREE], page 〈undefined〉 for a more powerful and dangerous
delete.

25.44 DELTREE file/directory name

Delete a file or a directory. You can use this command to delete a file the same way
as you do use the command See 〈undefined〉 [DELETE], page 〈undefined〉. The difference
between the two commands See 〈undefined〉 [DLETE], page 〈undefined〉 and DELTREE comes
into place when the program deletes directories.

This command, DELTREE forcefully tries to delete a directory even if the directory is
not empty. If the directory is not empty then the command tries to delete the files in the
directory and the subdirectories recursively.

If the file or the directory cannot be deleted then the command raises error. However
even in this case some of the files and subdirectories may already been deleted.

Delete a file or a directory. You can use this command to delete a file the same way
as you do use the command See 〈undefined〉 [DELETE], page 〈undefined〉. The difference
between the two commands See 〈undefined〉 [DLETE], page 〈undefined〉 and DELTREE comes
into place when the program deletes directories.

This command, DELTREE forcefully tries to delete a directory even if the directory is
not empty. If the directory is not empty then the command tries to delete the files in the
directory and the subdirectories recursively.

If the file or the directory cannot be deleted then the command raises error. However
even in this case some of the files and subdirectories may already been deleted.

Delete a file or a directory. You can use this command to delete a file the same way
as you do use the command See 〈undefined〉 [DELETE], page 〈undefined〉. The difference

Chapter 25: Command reference 145

between the two commands See 〈undefined〉 [DLETE], page 〈undefined〉 and DELTREE comes
into place when the program deletes directories.

This command, DELTREE forcefully tries to delete a directory even if the directory is
not empty. If the directory is not empty then the command tries to delete the files in the
directory and the subdirectories recursively.

If the file or the directory cannot be deleted then the command raises error. However
even in this case some of the files and subdirectories may already been deleted.

25.45 DO

This command is a looping construct that repeats commands so long as long the condition
following the keyword UNTIL becomes true or the condition following the keyword WHILE
becomes false.

The format of the command is
DO
...
commands to repeat
...
LOOP WHILE expression

or
DO
...
commands to repeat
...
LOOP UNTIL expression

The condition expression is evaluated every time after the loop commands were executed.
This means that the loop body is executed at least once.

A DO/LOOP construct should be closed with a LOOP UNTIL or with a LOOP WHILE command
but not with both.

The DO/LOOP UNTIL is practically equivalent to the REPEAT/UNTIL construct.
See also See 〈undefined〉 [WHILE], page 〈undefined〉, See 〈undefined〉 [DOUNTIL],

page 〈undefined〉, See 〈undefined〉 [DOWHILE], page 〈undefined〉, See 〈undefined〉
[REPEAT], page 〈undefined〉, See 〈undefined〉 [DO], page 〈undefined〉 and See 〈undefined〉
[FOR], page 〈undefined〉.

25.46 DO UNTIL condition

This command implements a looping construct that loops the code between the line DO
UNTIL and LOOP util the expression following the keywords on the loop starting line becomes
true.

DO UNTIL expression
...
commands to repeat

146 ScriptBasic Users Guide

...
LOOP

The expression is evaluated when the looping starts and each time the loop is restarted.
It means that the code between the DO UNTIL and LOOP lines may be skipped totally if the
expression evaluates to some TRUE value during the first evaluation before the execution
starts the loop.

This command is practically equivalent to the construct

WHILE NOT expression
...
commands to repeat
...
WEND

You can and you also should use the construct that creates more readable code.

See also See 〈undefined〉 [WHILE], page 〈undefined〉, See 〈undefined〉 [DOUNTIL],
page 〈undefined〉, See 〈undefined〉 [DOWHILE], page 〈undefined〉, See 〈undefined〉
[REPEAT], page 〈undefined〉, See 〈undefined〉 [DO], page 〈undefined〉 and See 〈undefined〉
[FOR], page 〈undefined〉.

25.47 DO WHILE condition

This command implements a looping construct that loops the code between the line DO
WHILE and LOOP util the expression following the keywords on the loop starting line becomes
false.

Practically this command is same as the command See 〈undefined〉 [WHILE], page 〈un-
defined〉 with a different syntax to be compatible with different BASIC implementations.

do while
...
loop

You can use the construct that creates more readable code.

See also See 〈undefined〉 [WHILE], page 〈undefined〉, See 〈undefined〉 [DOUNTIL],
page 〈undefined〉, See 〈undefined〉 [DOWHILE], page 〈undefined〉, See 〈undefined〉
[REPEAT], page 〈undefined〉, See 〈undefined〉 [DO], page 〈undefined〉 and See 〈undefined〉
[FOR], page 〈undefined〉.

25.48 END

End of the program. Stops program execution.

You should usually use this command to signal the end of a program. Although you can
use See 〈undefined〉 [STOP], page 〈undefined〉 and END interchangeably this is the convention
in BASIC programs to use the command END to note the end of the program and STOP to
stop the program execution based on some extra condition inside the code.

Chapter 25: Command reference 147

25.49 ENVIRON("envsymbol") or ENVIRON(n)

This function returns the value of an environment variable. Environment variables are
string values associated to names that are provided by the executing environment for the
programs. The executing environment is usually the operating system, but it can also be
the Web server in CGI programs that alters the environment variables provided by the
surrounding operating system specifying extra values.

This function can be used to get the string of an environment variable in case the program
knows the name of the variable or to list all the environment variables one by one.

If the environment variable name is known then the name as a string has to be passed
to this function as argument. In this case the return value is the value of the environment
variable. For example

MyPath = ENVIRON("PATH")

If the program wants to list all the environment variables the argument to the function
ENVIRON should be an integer number n. In this case the function returns a string containing
the name and the value of the n-th environment variable joined by a = sign. The numbering
starts with n=0.

If the argument value is integer and is out of the range of the possible environment vari-
able ordinal numbers (negative or larger or equal to the number of the available environment
variables) then the function returns undef.

If the argument to the function is undef then the function also returns the undef value.
Note that ScriptBasic provides an easy way for the embedding applications to redefine the

underlying function that returns the environment variable. Thus an embedding application
can "fool" a BASIC program providing its own environment variable. For example the
Eszter SB Application Engine provides an alternative environment variable reading function
and thus BASIC applications can read the environment using the function ENVIRON as if
the program was running in a real CGI environment.

25.49.1 ENVIRON Details

The following sample code prints all environment variables:
i=0
do
e$ = environ(i)
if IsDefined(e$) then
print e$
print

endif
i = i + 1

loop while IsDefined(e$)

25.50 EOD(dn)

Checks if there is still some file names in the directory opened for reading using the
directory number dn.

148 ScriptBasic Users Guide

See also See 〈undefined〉 [NEXTFILE], page 〈undefined〉.
Checks if there is still some file names in the directory opened for reading using the

directory number dn.
See also See 〈undefined〉 [NEXTFILE], page 〈undefined〉.
Checks if there is still some file names in the directory opened for reading using the

directory number dn.
See also See 〈undefined〉 [NEXTFILE], page 〈undefined〉.

25.51 EOF(n)

This function accepts one parameter, an opened file number. The return value is true
if and only if the reading has reached the end of the file.

This function accepts one parameter, an opened file number. The return value is true
if and only if the reading has reached the end of the file.

This function accepts one parameter, an opened file number. The return value is true
if and only if the reading has reached the end of the file.

25.52 ERROR() or ERROR n

The keyword ERROR can be used as a command as well as a built-in function. When used
as a function it returns the error code that last happened. The error codes are defined in
the header file error.bas that can be included with the command import. The error code
is a vital value when an error happens and is captured by some code defined after the label
referenced by the command ON ERROR GOTO. This helps the programmer to ensure that the
error was really the one that the error handling code can handle and not something else.

If the keyword is used as a command then it has to be followed by some numeric value.
The command does not ever return but generates an error of the code given by the argument.

Take care when composing the expression following the keyword ERROR. It may happen
that the expression itself can not be evaluated due to some error conditions during the
evaluation of the expression. The best practice is to use a constant expression using the
symbolic constants defined in the include file error.bas.

Note that the codes defined in the include file are version dependant.
If an error is not captured by any ON ERROR GOTO specified error handler then the inter-

preter stops. The command line variation passes the error code to the executing environment
as exit code. In other word you can exit from a BASIC program

25.53 ERROR$() or ERROR$(n)

Returns the English sentence describing the last error if the argument is not defined or
returns the English sentence describing the error for the error code n.

If the error code n provided as argument is negative or is above all possible errors then
the result of the function is undef.

Chapter 25: Command reference 149

25.54 EVEN

Return true if the argument is an even number. EVEN(undef) is undef or raises an
error if the option RaiseMatherror is set in bit sbMathErrUndef.

See also See 〈undefined〉 [ODD], page 〈undefined〉.

25.55 EXECUTE("executable program", time out,pid v)

This function should be used to start an external program and wait for it to finish.
The first argument of the function is the executable command line to start. The second

argument is the number of seconds that the BASIC program should wait for the external
program to finish. If the external program finishes during this period the function returns
and the return value is the exit code of the external program. If the argument specifying
how many seconds the BASIC program has to wait is -1 then the BASIC program will wait
infinitely.

If the program does not finish during the specified period then the function alters the
third argument, which has to be a variable and raises error. In this case the argument pid_v
will hold the PID of the external program. This value can be used in the error handling
code to terminate the external program.

25.55.1 EXECUTE Details

The function can be used to start a program synchronous and asynchronous mode as
well. When the timeout value passed to the function is zero the function starts the new
process, but does not wait it to finish, but raises an error. In this case the BASIC program
can catch this error using the ON ERROR GOTO structure and get the pid of the started process
from the variable pid_v. In this case the function does not "return" any value because a
BASIC error happened. For example:

ON ERROR GOTO NoError
a = EXECUTE("ls",0,PID)
NoError:
print "The program ’ls’ is running under the pid: ",PID,"\n"

If the argument time_out is -1 the function will wait for the subprocess to finish what-
ever long it takes to run. For example:

a = EXECUTE("ls",-1,PID)
print "ls was executed and the exit code was:",a

Note that the string passed as first argument containing the executable program name
and the arguments (the command line) should not contain zero character (a character with
ASCII code 0) for security reasons. If the command line string contains zero character an
error is raised.

This function should be used to start an external program and wait for it to finish.
The first argument of the function is the executable command line to start. The second

argument is the number of seconds that the BASIC program should wait for the external
program to finish. If the external program finishes during this period the function returns

150 ScriptBasic Users Guide

and the return value is the exit code of the external program. If the argument specifying
how many seconds the BASIC program has to wait is -1 then the BASIC program will wait
infinitely.

If the program does not finish during the specified period then the function alters the
third argument, which has to be a variable and raises error. In this case the argument pid_v
will hold the PID of the external program. This value can be used in the error handling
code to terminate the external program.

25.55.2 EXECUTE Details

The function can be used to start a program synchronous and asynchronous mode as
well. When the timeout value passed to the function is zero the function starts the new
process, but does not wait it to finish, but raises an error. In this case the BASIC program
can catch this error using the ON ERROR GOTO structure and get the pid of the started process
from the variable pid_v. In this case the function does not "return" any value because a
BASIC error happened. For example:

ON ERROR GOTO NoError
a = EXECUTE("ls",0,PID)
NoError:
print "The program ’ls’ is running under the pid: ",PID,"\n"

If the argument time_out is -1 the function will wait for the subprocess to finish what-
ever long it takes to run. For example:

a = EXECUTE("ls",-1,PID)
print "ls was executed and the exit code was:",a

Note that the string passed as first argument containing the executable program name
and the arguments (the command line) should not contain zero character (a character with
ASCII code 0) for security reasons. If the command line string contains zero character an
error is raised.

This function should be used to start an external program and wait for it to finish.
The first argument of the function is the executable command line to start. The second

argument is the number of seconds that the BASIC program should wait for the external
program to finish. If the external program finishes during this period the function returns
and the return value is the exit code of the external program. If the argument specifying
how many seconds the BASIC program has to wait is -1 then the BASIC program will wait
infinitely.

If the program does not finish during the specified period then the function alters the
third argument, which has to be a variable and raises error. In this case the argument pid_v
will hold the PID of the external program. This value can be used in the error handling
code to terminate the external program.

25.55.3 EXECUTE Details

The function can be used to start a program synchronous and asynchronous mode as
well. When the timeout value passed to the function is zero the function starts the new
process, but does not wait it to finish, but raises an error. In this case the BASIC program

Chapter 25: Command reference 151

can catch this error using the ON ERROR GOTO structure and get the pid of the started process
from the variable pid_v. In this case the function does not "return" any value because a
BASIC error happened. For example:

ON ERROR GOTO NoError
a = EXECUTE("ls",0,PID)
NoError:
print "The program ’ls’ is running under the pid: ",PID,"\n"

If the argument time_out is -1 the function will wait for the subprocess to finish what-
ever long it takes to run. For example:

a = EXECUTE("ls",-1,PID)
print "ls was executed and the exit code was:",a

Note that the string passed as first argument containing the executable program name
and the arguments (the command line) should not contain zero character (a character with
ASCII code 0) for security reasons. If the command line string contains zero character an
error is raised.

25.56 EXIT FUNCTION

This function stops the execution of a function and the execution gets back to the point
from where the function was called. Executing this command has the same effect as if the
execution has reached the end of a function.

25.57 EXIT SUB

This function stops the execution of a subroutine and the execution gets back to the
point from where the subroutine was called. Executing this command has the same effect
as if the execution has reached the end of a subroutine.

Same as See 〈undefined〉 [EXITFUNC], page 〈undefined〉

25.58 EXP

Calculates the x-th exponent of e. If the result is within the range of an integer value
on the actual architecture then the result is returned as an integer, otherwise it is returned
as a real value.

EXP(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

25.59 FALSE

This built-in constant is implemented as an argument less function. Returns the value
false.

152 ScriptBasic Users Guide

25.60 FILEACCESSTIME(file name)

Get the time the file was accessed last time.
This file time is measured in number of seconds since January 1, 1970 00:00. Note that

the different file systems store the file time with different precision. Also FAT stores the
file time in local time while NTFS for example stores the file time as GMT. This function
returns the value rounded to whole seconds as returned by the operating system. Some of
the file systems may not store all three file time types:

the time when the file was created,
last time the file was modified and
last time the file was accessed

Trying to get a time not defined by the file system will result undef.
Get the time the file was accessed last time.
This file time is measured in number of seconds since January 1, 1970 00:00. Note that

the different file systems store the file time with different precision. Also FAT stores the
file time in local time while NTFS for example stores the file time as GMT. This function
returns the value rounded to whole seconds as returned by the operating system. Some of
the file systems may not store all three file time types:

the time when the file was created,
last time the file was modified and
last time the file was accessed

Trying to get a time not defined by the file system will result undef.
Get the time the file was accessed last time.
This file time is measured in number of seconds since January 1, 1970 00:00. Note that

the different file systems store the file time with different precision. Also FAT stores the
file time in local time while NTFS for example stores the file time as GMT. This function
returns the value rounded to whole seconds as returned by the operating system. Some of
the file systems may not store all three file time types:

the time when the file was created,
last time the file was modified and
last time the file was accessed

Trying to get a time not defined by the file system will result undef.

25.61 FILECOPY filename,filename

Copy a file. The first file is the existing one, the second is the name of the new file. If
the destination file already exists then the command overwrites the file. If the destination
file is to be created in a directory that does not exist yet then the directory is created
automatically.

In the current version of the command you can not use wild characters to specify more
than one file to copy, and you can not concatenate files using this command. You also have

Chapter 25: Command reference 153

to specify the full file name as destination file and this is an error to specify only a directory
where to copy the file.

Later versions of this command may implement these features.

If the program can not open the source file to read or the destination file can not be
created then the command raises error.

Copy a file. The first file is the existing one, the second is the name of the new file. If
the destination file already exists then the command overwrites the file. If the destination
file is to be created in a directory that does not exist yet then the directory is created
automatically.

In the current version of the command you can not use wild characters to specify more
than one file to copy, and you can not concatenate files using this command. You also have
to specify the full file name as destination file and this is an error to specify only a directory
where to copy the file.

Later versions of this command may implement these features.

If the program can not open the source file to read or the destination file can not be
created then the command raises error.

Copy a file. The first file is the existing one, the second is the name of the new file. If
the destination file already exists then the command overwrites the file. If the destination
file is to be created in a directory that does not exist yet then the directory is created
automatically.

In the current version of the command you can not use wild characters to specify more
than one file to copy, and you can not concatenate files using this command. You also have
to specify the full file name as destination file and this is an error to specify only a directory
where to copy the file.

Later versions of this command may implement these features.

If the program can not open the source file to read or the destination file can not be
created then the command raises error.

25.62 FILECREATETIME(file name)

Get the time the file was modified last time. See also the comments on the function See
〈undefined〉 [FTACCESS], page 〈undefined〉. Get the time the file was modified last time.
See also the comments on the function See 〈undefined〉 [FTACCESS], page 〈undefined〉.
Get the time the file was modified last time. See also the comments on the function See
〈undefined〉 [FTACCESS], page 〈undefined〉.

25.63 FILEEXISTS(file name)

Returns true if the named file exists. Returns true if the named file exists. Returns
true if the named file exists.

154 ScriptBasic Users Guide

25.64 FILELEN(file name)

Get the length of a named file. If the length of the file can not be determined (for
example the file does not exists, or the process running the code does not have permission
to read the file) then the return value is undef.

This function can be used instead of See 〈undefined〉 [LOC], page 〈undefined〉 when the
file is not opened by the BASIC program. Get the length of a named file. If the length of
the file can not be determined (for example the file does not exists, or the process running
the code does not have permission to read the file) then the return value is undef.

This function can be used instead of See 〈undefined〉 [LOC], page 〈undefined〉 when the
file is not opened by the BASIC program. Get the length of a named file. If the length of
the file can not be determined (for example the file does not exists, or the process running
the code does not have permission to read the file) then the return value is undef.

This function can be used instead of See 〈undefined〉 [LOC], page 〈undefined〉 when the
file is not opened by the BASIC program.

25.65 FILEMODIFYTIME(file name)

Get the time the file was modified last time. See also the comments on the function See
〈undefined〉 [FTACCESS], page 〈undefined〉.

Get the time the file was modified last time. See also the comments on the function See
〈undefined〉 [FTACCESS], page 〈undefined〉.

Get the time the file was modified last time. See also the comments on the function See
〈undefined〉 [FTACCESS], page 〈undefined〉.

25.66 FIX

This function returns the integral part of the argument. The return value of the function
is integer with the exception that FIX(undef) may return undef.

FIX(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

The difference between INT and FIX is that INT truncates down while FIX truncates
towards zero. The two functions are identical for positive numbers. In case of negative
arguments INT will give a smaller number if the argument is not integer. For example:

int(-3.3) = -4
fix(-3.3) = -3

See See 〈undefined〉 [INT], page 〈undefined〉.

25.67 LOCK # fn, mode

Lock a file or release a lock on a file. The mode parameter can be read, write or release.
When a file is locked to read no other program is allowed to write the file. This ensures

that the program reading the file gets consistent data from the file. If a program locks a

Chapter 25: Command reference 155

file to read using the lock value read other programs may also get the read lock, but no
program can get the See 〈undefined〉 [write], page 〈undefined〉 lock. This means that any
program trying to write the file and issuing the command LOCK with the parameter write
will stop and wait until all read locks are released.

When a program write locks a file no other program can read the file or write the file.

Note that the different operating systems and therefore ScriptBasic running on different
operating systems implement file lock in different ways. UNIX operating systems implement
so called advisory locking, while Windows NT implements mandatory lock.

This means that a program under UNIX can write a file while another program has a
read or write lock on the file if the other program is not good behaving and does not ask
for a write lock. Therefore this command under UNIX does not guarantee that any other
program is not accessing the file simultaneously.

Contrary Windows NT does lock the file in a hard way, and this means that no other
process can access the file in prohibited way while the file is locked.

This different behavior usually does not make harm, but in some rare cases knowing it
may help in debugging some problems. Generally you should not have a headache because
of this.

You should use this command to synchronize the BASIC programs running parallel and
accessing the same file.

You can also use the command LOCK REGION to lock a part of the file while leaving other
parts of the file accessible to other programs.

If you heavily use record oriented files and file locks you may consider using some data
base module to store the data in database instead of plain files. Lock a file or release a lock
on a file. The mode parameter can be read, write or release.

When a file is locked to read no other program is allowed to write the file. This ensures
that the program reading the file gets consistent data from the file. If a program locks a
file to read using the lock value read other programs may also get the read lock, but no
program can get the See 〈undefined〉 [write], page 〈undefined〉 lock. This means that any
program trying to write the file and issuing the command LOCK with the parameter write
will stop and wait until all read locks are released.

When a program write locks a file no other program can read the file or write the file.

Note that the different operating systems and therefore ScriptBasic running on different
operating systems implement file lock in different ways. UNIX operating systems implement
so called advisory locking, while Windows NT implements mandatory lock.

This means that a program under UNIX can write a file while another program has a
read or write lock on the file if the other program is not good behaving and does not ask
for a write lock. Therefore this command under UNIX does not guarantee that any other
program is not accessing the file simultaneously.

Contrary Windows NT does lock the file in a hard way, and this means that no other
process can access the file in prohibited way while the file is locked.

This different behavior usually does not make harm, but in some rare cases knowing it
may help in debugging some problems. Generally you should not have a headache because
of this.

156 ScriptBasic Users Guide

You should use this command to synchronize the BASIC programs running parallel and
accessing the same file.

You can also use the command LOCK REGION to lock a part of the file while leaving other
parts of the file accessible to other programs.

If you heavily use record oriented files and file locks you may consider using some data
base module to store the data in database instead of plain files.

25.68 FOR var=exp start TO exp stop [STEP exp step]

Implements a FOR loop. The variable var gets the value of the start expression exp_
start, and after each execution of the loop body it is incremented or decrement by the
value exp_step until it reaches the stop value exp_stop.

FOR var= exp_start TO exp_stop [STEP exp_step]
...
commands to repeat
...
NEXT var

The STEP part of the command is optional. If this part is missing then the default value
to increment the variable is 1.

If
the expression exp_start is larger than the expression exp_stop and exp_step is
positive or if
the expression exp_start is smaller than the expression exp_stop and exp_step is
negative

then the loop body is not executed even once and the variable retains its old value.
When the loop is executed at least once the variable gets the values one after the other

and after the loop exists the loop variable holds the last value for which the loop already
did not execute. Thus

for h= 1 to 3
next
print h
stop

prints 4.
The expression exp_start is evaluated only once when the loop starts. The other two

expressions exp_stop and exp_step are evaluated before each loop. Thus
j = 1
k = 10
for h= 1 to k step j
print h,"\n"
j += 1
k -= 1
next
print k," ",j,"\n"

Chapter 25: Command reference 157

stop

will print
1
3
6
7 4

To get into more details the following example loop
STEP_v = 5
for z= 1 to 10 step STEP_v
print z,"\n"
STEP_v -= 10
next z

executes only once. This is because the step value changes its sign during the evaluation
and the new value being negative commands the loop to terminate as the loop variable
altered value is smaller then the end value. In other words the comparison also depends on
the actual value of the step expression.

These are not only the expressions that are evaluated before each loop, but the variable
as well. If the loop variable is a simple variable then this has not too much effect. However
if the loop variable is an array member then this really has to be taken into account. For
example:

for j=1 to 9
A[j] = 0

next

j = 1
for A[j]= 1 to 9

for k=1 to 9
print A[k]

next k
print

j += 1
if j > 9 then STOP

next

prints
100000000
110000000
111000000
111100000
111110000
111111000
111111100
111111110

158 ScriptBasic Users Guide

111111111

so you can see that the loop takes, evaluates, compares and increments the actual array
element as the variable j in the sample code above is incremented.

The loop variable or some other left value has to stand between the keyword FOR and
the sign = on the start line of the loop but this is optional following the keyword NEXT.
ScriptBasic optionally allow you to write the variable name after the keyword NEXT but the
interpreter does not check if the symbol is a variable of the loop. The role of this symbol
is merely documentation of the BASIC code. However, you can not write an array element
following the keyword NEXT, only a simple variable name.

If the expression exp_step is zero then the loop variable is not altered and the loop is
re-executed with the same loop variable value. This way you can easily get into infinite
loop.

These are fine tuning details of the command FOR that you may need to be aware when
you read some tricky code. On the other hand you should never create any code that
depends on these features. The loop variable is recommended to be a simple variable and
the expressions in the loop head should evaluate the same for each execution of the loop. If
you need something more special that may depend on some of the features discussed above
then you have to consider using some other looping construct to get more readable code.

25.69 FORK()

NOT IMPLEMENTED

This function is supposed to perform process forking just as the native UNIX function
fork does. However this function is not implemented in ScriptBasic (yet). Until this
function is implemented in ScriptBasic you can use the UX module fork function.

This function is supposed to perform process forking just as the native UNIX function
fork does. However this function is not implemented in ScriptBasic (yet). Until this
function is implemented in ScriptBasic you can use the UX module fork function.

This function is supposed to perform process forking just as the native UNIX function
fork does. However this function is not implemented in ScriptBasic (yet). Until this
function is implemented in ScriptBasic you can use the UX module fork function.

25.70 FORMAT()

The function format accepts variable number of arguments. The first argument is a
format string and the rest of the arguments are used to create the result string according
to the format string. This way the function format is like the C function sprintf.

The format string can contain normal characters and control substrings.
The control substring have the form %[flags][width][.precision]type. It follows

the general sprintf format except that type prefixes are not required or allowed and type
can only be "dioxXueEfgGsc". The * for width and precision is supported.

An alternate format BASIC-like for numbers has the form %~format~ where format can
be:

Chapter 25: Command reference 159

Digit or space
0 Digit or zero
^ Stores a number in exponential format. Unlike QB’s USING format this is a place-

holder like the #.
. The position of the decimal point.
, Separator.
- Stores minus if the number is negative.
+ Stores the sign of the number.
Acknowledgement: the function format was implemented by Paulo Soares

<psoares@consiste.pt>

25.71 FORMATDATE

FormatDate("format",time)

Formats a time value (or date) according to the format string. The format string may
contain placeholders. The first argument is the format string the second argument is the
time value to convert. If the second argument is missing or it is undef then the local time
is converted.

If the time value is presented it has to be the number of seconds elapsed since January
1, 1970. This is the usual time stamp value generally used under UNIX.

If the second argument is a negativevalue then this is treated relative to the current time
point. For example

print FormatDate("YEAR MON DD HH:mm:ss", -60)

will print out the time that was one minute ago.

25.71.1 FORMATDATE Details

This function uses the first argument as a formatting string. This string may contain
the following character strings:

YEAR four digit year
YY two digit year
MON three letter abbreviation of the month name
MM month
0M month with leading zero if needed
MONTH-NAME name of the month
DD day of the month
0D day of the month with leading zero if needed
WD week day on a single digit starting with sunday=0
WEEKDAY-NAME the name of the weekday
WDN three letter abbreviation fo the week day name
HH hours (24 hours notation)
0H hours with leading zero if needed (24 hours notation)
hh hours (12 hours notation)

160 ScriptBasic Users Guide

0h hours with leading zero if needed (12 hours notation)
mm minutes
0m minutes with leading zero if needed
ss seconds
0s seconds with leading zeroes if needed
am
pm is am or pm

Any other character in the format string will get into the result verbatim.

25.72 FILEOWNER(FileName)

This function returns the name of the owner of a file as a string. If the file does not
exist or for some other reason the owner of the file can not be determined then the function
returns undef.

This function returns the name of the owner of a file as a string. If the file does not
exist or for some other reason the owner of the file can not be determined then the function
returns undef.

This function returns the name of the owner of a file as a string. If the file does not
exist or for some other reason the owner of the file can not be determined then the function
returns undef.

25.73 FRAC

The function returns the fractional part of the argument. This function always returns
a double except that FRAC(undef) may return undef. FRAC(undef) is undef or raises an
error if the option RaiseMatherror is set in bit sbMathErrUndef.

Negative arguments return negative value (or zero if the argument is a negative integer),
positive arguments result positive values (or zero if the argument is integer).

25.74 FREEFILE()

This function returns a free file number, which is currently not associated with any
opened file. If there is no such file number it returns undef.

The returned value can be used in a consecutive See 〈undefined〉 [OPEN], page 〈unde-
fined〉 statement to specify a file number. Another way to get a free file number is to set a
variable to hold the integer value zero and use the variable as file number in the statement
See 〈undefined〉 [OPEN], page 〈undefined〉. For more information on this method see the
documentation of the statement See 〈undefined〉 [OPEN], page 〈undefined〉. This function
returns a free file number, which is currently not associated with any opened file. If there
is no such file number it returns undef.

The returned value can be used in a consecutive See 〈undefined〉 [OPEN], page 〈unde-
fined〉 statement to specify a file number. Another way to get a free file number is to set a
variable to hold the integer value zero and use the variable as file number in the statement
See 〈undefined〉 [OPEN], page 〈undefined〉. For more information on this method see the

Chapter 25: Command reference 161

documentation of the statement See 〈undefined〉 [OPEN], page 〈undefined〉. This function
returns a free file number, which is currently not associated with any opened file. If there
is no such file number it returns undef.

The returned value can be used in a consecutive See 〈undefined〉 [OPEN], page 〈unde-
fined〉 statement to specify a file number. Another way to get a free file number is to set a
variable to hold the integer value zero and use the variable as file number in the statement
See 〈undefined〉 [OPEN], page 〈undefined〉. For more information on this method see the
documentation of the statement See 〈undefined〉 [OPEN], page 〈undefined〉.

25.75 FUNCTION fun()

This command should be used to define a function. A function is a piece of code that
can be called by the BASIC program from the main part or from a function or subroutine.

FUNCTION fun(a,b,c)
...
fun = returnvalue
...
END FUNCTION

The end of the function is defined by the line containing the keywords END FUNCTION.

25.75.1 FUNCTION Details

The function declaration can be placed anywhere in the code before or after the function
is used. Because the functions just as well as the variables are typeless there is no such
thing as function prototype and thus functions can not be declared beforehand.

You can call a function in your BASIC code that is not defined yet. The syntax analyzer
seeing the function_name() construct will see that this is a function call and will generate
the appropriate code to call the function that is defined later. If the function is not defined
until the end of the code then the interpreter will generate error before the code is started.

Functions just as well as subroutines can have argument and local variables. When the
function or subroutine is called the actual values are evaluated and placed in the argument
variables. It is not an error when calling a function to specify less or more number of actual
arguments than the declared arguments.

If the actual arguments are too few the rest of the arguments will become undef before
the function starts. If there are too many arguments when calling a function or subroutine
the extra arguments are evaluated and then dropped (ignored).

ScriptBasic allows recursive functions thus a function can call itself, but a function or
subroutine is not allowed to be declared inside of another subroutine or function.

Functions differ from subroutines in the fact functions return value while subroutines do
not. However in ScriptBasic this is not a strict rule. Subroutines declared with SUB instead
of FUNCTION are allowed to return a value and been used just as if it was declared with the
keyword FUNCTION.

To return a value from a function the name of the function can be used just like a
local variable. The assignment assigning a value to the function will be returned from

162 ScriptBasic Users Guide

the function. If there are more than one assignments to the function name then the last
assignment executed will prevail. On the other hand you can not use the function name
as a local variable and retrieve the last assigned value from the function name. Using the
function name inside the function in an expression will result recursive call or will be used
as a global or local variable.

If the actual value of an argument is left value then the reference to the actual argument
is passed to the function or the subroutine instead of the value. In other cases the value of
the expression standing in the position of the argument when calling the function is passed.

Passing a variable by reference means altering the argument variable also alters the
variable that was passed to the function.

To force a variable passed by value rather than reference the operator ByVal can be used.
When ByVal is used as a numeric operator in an expression acts as an identity operator.
It means that the value of the expression is the same as the value standing on the right of
the operator ByVal. However this is already an expression and not a variable and as such
it can not be passed by reference only the value.

The keyword ByVal can also be used as a command listing all the argument variables
after the keyword on a line:

function myfunc(a,b,c,d)
ByVal a,b,c
...

In this case ByVal acts as a command and replaces the references by copies of the
values. After executing this command the argument values can be altered without affecting
the variables that stand in the argument’s place where the function is called.

Although the command ByVal looks like a declaration of arguments to be passed by
value instead of reference; this is not a declaration but it rather a command that has to be
executed.

25.76 GCD

This is a planned function that takes two or more integer argument and calculates the
largest common divisor of them.

25.77 GMTIME

This function returns the GMT time expressed as seconds since January 1, 1970,
00:00am. The function does not accept any argument. This function is similar to the
function See 〈undefined〉 [NOW], page 〈undefined〉 but returns the GMT time instead of
the actual local time.

25.78 GMTOLOCALTIME

This function accepts one argument that has to be the number of seconds elapsed since
January 1, 1970 0:00 am in GMT. The function returns the same number of seconds in local
time. In other words the function converts a GMT time value to local time value.

Chapter 25: Command reference 163

25.79 GOSUB label

=H Gosub commands

This is the good old way implementation of the BASIC GOSUB command. The command
GOSUB works similar to the command GOTO with the exception that the next return command
will drive the interpreter to the line following the line with the GOSUB.

You can only call a code segment that is inside the actual code environment. In other
words if the GOSUB is in a function or subroutine then the label referenced by the GOSUB
should also be in the same function or subroutine. Similarly any GOSUB in the main code
should reference a label, which is also in the main code.

To return from the code fragment called by the command GOSUB the command RETURN
should be used. Note that this will not break the execution of a function or a subroutine.
The execution will continue on the command line following the GOSUB line.

GOSUB commands can follow each other, ScriptBasic will build up a stack of GOSUB calls
and will return to the appropriate command line following the matching GOSUB command.

When a subroutine or function contains GOSUB commands and the function or subroutine
is finished so that one or more executed GOSUB command remains without executed RETURN
then the GOSUB/RATURN stack is cleared. This is not an error.

See also See 〈undefined〉 [RETURN], page 〈undefined〉.

25.80 GOTO label

Go to a label and continue program execution at that label. Labels are local within
functions and subroutines. You can not jump into a subroutine or jump out of it.

Use of GOTO is usually discouraged and is against structural programming. Whenever
you feel the need to use the GOTO statement (except ON ERROR GOTO) thin it twice whether
there is a better solution without utilizing the statement GOTO.

Typical use of the GOTO statement to jump out of some error condition to the error
handling code or jumping out of some loop on some condition.

25.81 HCOS

This is a planned function to calculate the cosinus hyperbolicus of the argument.

25.82 HCOSECANT

This is a planned function to calculate the cosecant hyperbolicus of the argument.

25.83 HCTAN

This is a planned function to calculate the cotangent hyperbolicus of the argument.

164 ScriptBasic Users Guide

25.84 HEX(n)

Take the argument as a long value and convert it to a string that represents the value in
hexadecimal form. The hexadecimal form will contain upper case alpha character if there
is any alpha character in the hexadecimal representation of the number.

25.85 HOSTNAME()

This function accepts no argument and returns the host name of the machine executing
the BASIC program.

This function accepts no argument and returns the host name of the machine executing
the BASIC program. This host name is the TCP/IP network host name of the machine.

This function accepts no argument and returns the host name of the machine executing
the BASIC program.

25.86 HOUR

This function accepts one argument that should express the time in number of seconds
since January 1, 1970 0:00 am and returns the hour value of that time. If the argument is
missing the function uses the actual local time.

25.87 HSECANT

This is a planned function to calculate the secant hyperbolicus of the argument.

25.88 HSIN

This is a planned function to calculate the sinus hyperbolicus of the argument.

25.89 HTAN

This is a planned function to calculate the tangent hyperbolicus of the argument.

25.90 ICALL n,v1,v2, ... ,vn

ICALL is implicit call. The first argument of an ICALL command or ICALL function
should be the integer value returned by the function See 〈undefined〉 [ADDRESS], page 〈un-
defined〉 as the address of a user defined function.

The rest of the arguments are the arguments to be passed to the function to be called.
The return value if the function ICALL is the value of the implicitly called function.

Chapter 25: Command reference 165

25.90.1 ICALL Details

Whenever you call a function or subroutine you have to know the name of the subroutine
or function. In some situation programmers want to call a function without knowing the
name of the function. For example you want to write a sorting subroutine that sorts general
elements and the caller should provide a subroutine that makes the comparison. This way
the sorting algorithm can be implemented only once and need not be rewritten each time
a new type of data is to be sorted. The sorting subroutine gets the comparing function
as an argument and calls the function indirectly. ScriptBasic can not pass functions as
arguments to other functions, but it can pass integer numbers. The function See 〈unde-
fined〉 [ADDRESS], page 〈undefined〉 can be used to convert a function into integer. The
result of the built-in function See 〈undefined〉 [ADDRESS], page 〈undefined〉 is an integer
number, which is associated inside the basic code with the function. You can pass this value
to the ICALL command or function as first argument. The ICALL command is the command
for indirect subroutine call. The call

ICALL Address(MySubroutine()),arg1,arg2,arg3

is equivalent to
CALL MySubroutine(arg1,arg2,arg3)

If you call a function that has return value use can use the ICALL function instead of the
ICALL statement:

A = ICALL(Address(MyFunction()),arg1,arg2,arg3)

is equivalent to
A = MyFunction(arg1,arg2,arg3)

The real usage of the function Address and icall can be seen in the following example:
sub MySort(sfun,q)
local ThereWasNoChange,SwapVar
repeat
ThereWasNoChange = 1
for i=lbound(q) to ubound(q)-1

if icall(sfun,q[i],q[i+1]) > 0 then
ThereWasNoChange = 0
SwapVar = q[i]
q[i] = q[i+1]
q[i+1] = SwapVar
endif

next i
until ThereWasNoChange

end sub

function IntegerCompare(a,b)
if a < b then
cmp = -1

166 ScriptBasic Users Guide

elseif a = b then
cmp = 0
else
cmp = 1
endif

end function

h[0] = 2
h[1] = 7
h[2] = 1

MySort address(IntegerCompare()) , h

for i=lbound(h) to ubound(h)
print h[i],"\n"
next i

Note that the argument of the function Address is a function call. ScriptBasic allows
variables and functions to share the same name. Address is a built-in function just as any
other built in function, and therefore the expression

Address(MySub) B<THIS IS WRONG!>

Is syntactically correct. The only problem is that it tries to calculate the address of the
variable MySub, which it can not and results a run-time error. Instead you have to write

Address(MySub())

using the parentheses. In this situation the function or subroutine MySub() will not be
invoked. The parentheses tell the compiler that this is a function and not a variable.

25.91 IF condition THEN

Conditional execution. There are two different ways to use this command: single line IF
and multi line IF.

A single line IF has the form
IF condition THEN command

There is no way to specify any ELSE part for the command in the single line version. If
you need ELSE command you have use multi line IF.

The multi line IF should not contain any command directly after the keyword THEN. It
should have the format:

IF condition THEN
commands

ELSE
commands

END IF

The ELSE part of the command is optional, thus the command can have the format
IF condition THEN
commands

Chapter 25: Command reference 167

END IF

as well. To be very precise the full syntax of the multi-line IF command is:
IF condition THEN
commands
[ELSE IF | ELSEIF | ELSIF | ELIF
commands
...]

[ELSE
commands]

END IF | ENDIF

You can use as many ELSE IF branches as you like and at most one ELSE branch.
The keywords ELSE IF, ELSEIF and others are allowed for ease program porting from

other BASIC dialect. There is no difference between the interpretation. The same is true
for END IF in two words and written into a single keyword ENDIF.

25.92 IMAX

This is a planned function to select and return the index of the maximum of the argu-
ments.

25.93 IMIN

This is a planned function to select and return the index of the minimum of the argu-
ments.

25.94 INPUT(n,fn)

This function reads records from an opened file.
Arguments:
n the first argument is the number of records to read. The size of the record in terms
of bytes is defined as the LEN parameter when the file was opened. If this was missing
the function reads n bytes from the file or socket.
fn the second parameter is the file number associated to the opened file by the command
See 〈undefined〉 [OPEN], page 〈undefined〉. If this parameter is missing the function
reads from the standard input.

The function tries but not necessarily reads n records from the file. To get the actual
number of bytes (and not records!) read from the file you can use the function LEN on the
result string.

Note that some Basic languages allow the form
a = INPUT(20,#1)

however this extra # is not allowed in ScriptBasic. The character # is an operator in
ScriptBasic defined as no-operation and therefore you can use this form. On the other

168 ScriptBasic Users Guide

hand operators like # are reserved for the external modules and some external module may
redefine this operator. Programs using such modules may end up in trouble when using the
format above therefore it is recommended not to use the above format.

This function reads records from an opened file.

Arguments:

n the first argument is the number of records to read. The size of the record in terms
of bytes is defined as the LEN parameter when the file was opened. If this was missing
the function reads n bytes from the file or socket.

fn the second parameter is the file number associated to the opened file by the command
See 〈undefined〉 [OPEN], page 〈undefined〉. If this parameter is missing the function
reads from the standard input.

The function tries but not necessarily reads n records from the file. To get the actual
number of bytes (and not records!) read from the file you can use the function LEN on the
result string.

Note that some Basic languages allow the form

a = INPUT(20,#1)

however this extra # is not allowed in ScriptBasic. The character # is an operator in
ScriptBasic defined as no-operation and therefore you can use this form. On the other
hand operators like # are reserved for the external modules and some external module may
redefine this operator. Programs using such modules may end up in trouble when using the
format above therefore it is recommended not to use the above format.

This function reads records from an opened file.

Arguments:

n the first argument is the number of records to read. The size of the record in terms
of bytes is defined as the LEN parameter when the file was opened. If this was missing
the function reads n bytes from the file or socket.

fn the second parameter is the file number associated to the opened file by the command
See 〈undefined〉 [OPEN], page 〈undefined〉. If this parameter is missing the function
reads from the standard input.

The function tries but not necessarily reads n records from the file. To get the actual
number of bytes (and not records!) read from the file you can use the function LEN on the
result string.

Note that some Basic languages allow the form

a = INPUT(20,#1)

however this extra # is not allowed in ScriptBasic. The character # is an operator in
ScriptBasic defined as no-operation and therefore you can use this form. On the other
hand operators like # are reserved for the external modules and some external module may
redefine this operator. Programs using such modules may end up in trouble when using the
format above therefore it is recommended not to use the above format.

Chapter 25: Command reference 169

25.95 INSTR(base string,search string [,position])

This function can be used to search a sub-string in a string. The first argument is the
string we are searching in. The second argument is the string that we actually want to find
in the first argument. The third optional argument is the position where the search is to
be started. If this argu-ment is missing the search starts with the first character position of
the string. The function returns the position where the sub-string can be found in the first
string. If the searched sub-string is not found in the string then the return value is undef.

See See 〈undefined〉 [INSTRREV], page 〈undefined〉

25.96 INSTRREV(base string,search string [,position])

This function can be used to search a sub-string in a string in reverse order starting
from the end of the string. The first argument is the string we are searching in. The
second argument is the string that we actually want to find in the first argument. The
third optional argument is the position where the search is to be started. If this argument
is missing the search starts with the last character position of the string. The function
returns the position where the sub-string can be found in the first string. If the searched
sub-string is not found in the string then the return value is undef.

See See 〈undefined〉 [INSTR], page 〈undefined〉

25.97 INT

This function returns the integral part of the argument. INT(undef) is undef or raises
an error if the option RaiseMatherror is set in bit sbMathErrUndef. Other than this the
function returns integer value.

The difference between INT and FIX is that INT truncates down while FIX truncates
towards zero. The two functions are identical for positive numbers. In case of negative
arguments INT will give a smaller number if the argument is not integer. For example:

int(-3.3) = -4
fix(-3.3) = -3

See See 〈undefined〉 [FIX], page 〈undefined〉.

25.98 ISARRAY

This function can be used to determine whether a variable holds array value or ordinary
value. If the variable passed as argument to the function is an array then the function
returns true, otherwise the function returns false.

See also See 〈undefined〉 [ISSTRING], page 〈undefined〉, See 〈undefined〉 [ISINTEGER],
page 〈undefined〉, See 〈undefined〉 [ISREAL], page 〈undefined〉, See 〈undefined〉 [ISNU-
MERIC], page 〈undefined〉, See 〈undefined〉 [ISDEFINED], page 〈undefined〉, See 〈unde-
fined〉 [ISUNDEF], page 〈undefined〉, See 〈undefined〉 [ISEMPTY], page 〈undefined〉, See
〈undefined〉 [TYPE], page 〈undefined〉.

170 ScriptBasic Users Guide

25.99 ISDEFINED

This function can be used to determine whether an expression is defined or undefined
(aka undef). If the argument is a defined value then the function returns true, otherwise
the function returns false.

This function is the counter function of See 〈undefined〉 [ISUNDEF], page 〈undefined〉.
See also See 〈undefined〉 [ISARRAY], page 〈undefined〉, See 〈undefined〉 [ISSTRING],

page 〈undefined〉, See 〈undefined〉 [ISINTEGER], page 〈undefined〉, See 〈undefined〉 [IS-
REAL], page 〈undefined〉, See 〈undefined〉 [ISNUMERIC], page 〈undefined〉, See 〈unde-
fined〉 [ISUNDEF], page 〈undefined〉, See 〈undefined〉 [ISEMPTY], page 〈undefined〉, See
〈undefined〉 [TYPE], page 〈undefined〉.

25.100 ISDIRECTORY(file name)

Returns true if the named file is a directory and false if the file is NOT a directory.
Returns true if the named file is a directory and false if the file is NOT a directory.
Returns true if the named file is a directory and false if the file is NOT a directory.

25.101 ISEMPTY

This function can be used to determine whether an expression holds an empty string.
Because programmers tend to use the value undef where empty string would be more precise
the function returns true if the argument is undef. Precisely:

The function returns true if the argument is undef or a string containing zero characters.
Otherwise the function returns false.

See also See 〈undefined〉 [ISARRAY], page 〈undefined〉, See 〈undefined〉 [ISSTRING],
page 〈undefined〉, See 〈undefined〉 [ISINTEGER], page 〈undefined〉, See 〈undefined〉 [IS-
REAL], page 〈undefined〉, See 〈undefined〉 [ISNUMERIC], page 〈undefined〉, See 〈unde-
fined〉 [ISDEFINED], page 〈undefined〉, See 〈undefined〉 [ISUNDEF], page 〈undefined〉, See
〈undefined〉 [TYPE], page 〈undefined〉.

25.102 ISINTEGER

This function can be used to determine whether an expression is integer or some other
type of value. If the argument is an integer then the function returns true, otherwise the
function returns false.

See also See 〈undefined〉 [ISARRAY], page 〈undefined〉, See 〈undefined〉 [ISSTRING],
page 〈undefined〉, See 〈undefined〉 [ISREAL], page 〈undefined〉, See 〈undefined〉 [ISNU-
MERIC], page 〈undefined〉, See 〈undefined〉 [ISDEFINED], page 〈undefined〉, See 〈unde-
fined〉 [ISUNDEF], page 〈undefined〉, See 〈undefined〉 [ISEMPTY], page 〈undefined〉, See
〈undefined〉 [TYPE], page 〈undefined〉.

Chapter 25: Command reference 171

25.103 ISNUMERIC

This function can be used to determine whether an expression is numeric (real or integer)
or some other type of value. If the argument is a real or an integer then the function returns
true, otherwise the function returns false.

See also See 〈undefined〉 [ISARRAY], page 〈undefined〉, See 〈undefined〉 [ISSTRING],
page 〈undefined〉, See 〈undefined〉 [ISINTEGER], page 〈undefined〉, See 〈undefined〉 [IS-
REAL], page 〈undefined〉, See 〈undefined〉 [ISDEFINED], page 〈undefined〉, See 〈undefined〉
[ISUNDEF], page 〈undefined〉, See 〈undefined〉 [ISEMPTY], page 〈undefined〉, See 〈unde-
fined〉 [TYPE], page 〈undefined〉.

25.104 ISREAL

This function can be used to determine whether an expression is real or some other type
of value. If the argument is a real then the function returns true, otherwise the function
returns false.

See also See 〈undefined〉 [ISARRAY], page 〈undefined〉, See 〈undefined〉 [ISSTRING],
page 〈undefined〉, See 〈undefined〉 [ISINTEGER], page 〈undefined〉, See 〈undefined〉 [ISNU-
MERIC], page 〈undefined〉, See 〈undefined〉 [ISDEFINED], page 〈undefined〉, See 〈unde-
fined〉 [ISUNDEF], page 〈undefined〉, See 〈undefined〉 [ISEMPTY], page 〈undefined〉, See
〈undefined〉 [TYPE], page 〈undefined〉.

25.105 ISFILE(file name)

Returns true if the named file is a regular file and false if it is a directory. Returns
true if the named file is a regular file and false if it is a directory. Returns true if the
named file is a regular file and false if it is a directory.

25.106 ISSTRING

This function can be used to determine whether an expression is string or some other
type of value. If the argument is a string then the function returns true, otherwise the
function returns false.

See also See 〈undefined〉 [ISARRAY], page 〈undefined〉, See 〈undefined〉 [ISINTEGER],
page 〈undefined〉, See 〈undefined〉 [ISREAL], page 〈undefined〉, See 〈undefined〉 [ISNU-
MERIC], page 〈undefined〉, See 〈undefined〉 [ISDEFINED], page 〈undefined〉, See 〈unde-
fined〉 [ISUNDEF], page 〈undefined〉, See 〈undefined〉 [ISEMPTY], page 〈undefined〉, See
〈undefined〉 [TYPE], page 〈undefined〉.

25.107 ISUNDEF

This function can be used to determine whether an expression is defined or undefined
(aka undef). If the argument is a defined value then the function returns false, otherwise
the function returns true.

172 ScriptBasic Users Guide

This function is the counter function of See 〈undefined〉 [ISDEFINED], page 〈undefined〉.
See also See 〈undefined〉 [ISARRAY], page 〈undefined〉, See 〈undefined〉 [ISSTRING],

page 〈undefined〉, See 〈undefined〉 [ISINTEGER], page 〈undefined〉, See 〈undefined〉 [IS-
REAL], page 〈undefined〉, See 〈undefined〉 [ISNUMERIC], page 〈undefined〉, See 〈unde-
fined〉 [ISDEFINED], page 〈undefined〉, See 〈undefined〉 [ISEMPTY], page 〈undefined〉, See
〈undefined〉 [TYPE], page 〈undefined〉.

25.108 JOIN(joiner,str1,str2,...)

Join the argument strings using the first argument as a joiner string.

25.108.1 JOIN Details

This function can be used to join several strings together. The first argument of the
function is the string used to join the rest of the arguments. The rest of the argument are
joined together, but also elements on an array can be joined together. See the example:

for i=1 to 8
q[i] = I
next
print join("|",q)
print
print join("/",1,2,3,4,5,6,7,8)
print
print join(" j-s ",q,2,3,4,5,6,7,8)
print
print join("/",1)
print

will print
1|2|3|4|5|6|7|8
1/2/3/4/5/6/7/8
1 j-s 2 j-s 3 j-s 4 j-s 5 j-s 6 j-s 7 j-s 8
1

The first join joins the elements of the array. The second join joins the arguments of the
function. The third example also joins the arguments although the second argument is an
array. Because there are more arguments each of them is treated as single value and are
joined. Whenever an array is used in place of a single value, the first element of the array is
taken. In this example this is 1. The last join is a special one. In this case the join string is
not used, because there is only one argument after the join string. Because this argument
is not an array there are no elements of it to join.

25.109 JOKER(n)

Return the actual match for the n-th joker character from the last executed See 〈unde-
fined〉 [LIKE], page 〈undefined〉 operator.

Chapter 25: Command reference 173

25.109.1 JOKER Details

When a LIKE operator is executed ScriptBasic stores the actual strings that matched
the joker and wild card characters from the pattern in an array. Using this function the
programcan access the actual value of the n-th string that was matched against the n-th
joker or wild card character. For example:

Const nl="\n"
if "file.txt" like "*.*" then
print "File=",joker(1)," extension=",joker(2),nl

else
print "did not match"

endif

will print
File=file extension=txt

25.110 KILL(pid)

This function kills (terminates) a process given by the pid and returns true if the process
was successfully killed. Otherwise it returns false.

Programs usually want to kill other processes that were started by themselves (by the
program I mean) and do not stop. For example you can start an external program using
the BASIC command See 〈undefined〉 [EXECUTE], page 〈undefined〉 to run up to a certain
time. If the program does not finish its work and does not stop during this time then that
program that started it can assume that the external program failed and got into an infinite
loop. To stop this external program the BASIC program should use the function KILL.

The BASIC program however can try to kill just any process that runs on the system
not only those that were started by the program. It can be successful if the program has
the certain permissions to kill the given process.

You can use this function along with the functions See 〈undefined〉 [SYSTEM], page 〈un-
defined〉 and EXECUTE. You can list the processes currently running on an NT box using
some of the functions of the module NT.

This function kills (terminates) a process given by the pid and returns true if the process
was successfully killed. Otherwise it returns false.

Programs usually want to kill other processes that were started by themselves (by the
program I mean) and do not stop. For example you can start an external program using
the BASIC command See 〈undefined〉 [EXECUTE], page 〈undefined〉 to run up to a certain
time. If the program does not finish its work and does not stop during this time then that
program that started it can assume that the external program failed and got into an infinite
loop. To stop this external program the BASIC program should use the function KILL.

The BASIC program however can try to kill just any process that runs on the system
not only those that were started by the program. It can be successful if the program has
the certain permissions to kill the given process.

You can use this function along with the functions See 〈undefined〉 [SYSTEM], page 〈un-
defined〉 and EXECUTE. You can list the processes currently running on an NT box using
some of the functions of the module NT.

174 ScriptBasic Users Guide

This function kills (terminates) a process given by the pid and returns true if the process
was successfully killed. Otherwise it returns false.

Programs usually want to kill other processes that were started by themselves (by the
program I mean) and do not stop. For example you can start an external program using
the BASIC command See 〈undefined〉 [EXECUTE], page 〈undefined〉 to run up to a certain
time. If the program does not finish its work and does not stop during this time then that
program that started it can assume that the external program failed and got into an infinite
loop. To stop this external program the BASIC program should use the function KILL.

The BASIC program however can try to kill just any process that runs on the system
not only those that were started by the program. It can be successful if the program has
the certain permissions to kill the given process.

You can use this function along with the functions See 〈undefined〉 [SYSTEM], page 〈un-
defined〉 and EXECUTE. You can list the processes currently running on an NT box using
some of the functions of the module NT.

25.111 LBOUND

This function can be used to determine the lowest occupied index of an array. Note
that arrays are increased in addressable indices automatically, thus it is not an error to use
a lower index that the value returned by the function LBOUND. On the other hand all the
element having index lower than the returned value are undef.

The argument of this function has to be an array. If the argument is an ordinary value,
or a variable that is not an array the value returned by the function will be undef.

LBOUND(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

See also See 〈undefined〉 [UBOUND], page 〈undefined〉.

25.112 LCASE()

Lowercase a string.

25.113 LCM

This is a planned function that takes two or more integer argument and calculates the
least common multiple of them.

25.114 LEFT(string,len)

Creates the left of a string. The first argument is the string. The second argument is
the number of characters that should be put into the result. If this value is larger than the
number of characters in the string then all the string is returned.

See also See 〈undefined〉 [MID], page 〈undefined〉, See 〈undefined〉 [RIGHT], page 〈un-
defined〉

Chapter 25: Command reference 175

25.114.1 LEFT Details

left(x,y) cuts out a substring of y characters from the left of the string x. If the first
argument is not defined the result is also undef. Otherwise the first argument is converted
to string and the second ar-gument is converted to integer value.

If the second argument is not defined or has negative value it is treated as numeric zero
and as such the result string will be empty string.

For compatibility reasons you can append a dollar ($) sign to the end of the function
identifier.

Example

a$ = _
"superqualifragilisticexpialidosys"
print "*",left(a$,undef),"*"
print "*",left(a$,7),"*"
print "*",left(a$,-6),"*"
print "*",left(a$,0),"*"
print left(undef,"66")

will print

**
superqu
**
**
undef

25.115 LEN()

This function interprets its argument as a string and returns the length of the string.
In ScriptBasic strings can hold any value thus the length of the string is the number of
characters contained in the string containing any binary characters, even binary zero.

If the argument is not a string it is converted to string automatically and the length of
the converted string is returned. The only exception is undef for which the result is also
undef.

25.116 v = expression

Assign a value to a variable.

On the left side of the = a variable or some other ScriptBasic left value has to stand. On
the right side an expression should be used. First the left value is evaluated and then the
expression. Finally the left value’s old value is replaced by the result of the expression.

The left value standing on the left side of the = can be a local or global variable, array
element or associative array element.

176 ScriptBasic Users Guide

25.117 v &= expression

Append a string to a variable.
The variable can be a global or local variable, array element or associative array element.
You can use this command as a shorthand for v = v & expression. Using this short

format is more readable in some cases and generates more efficient code. However note
that this kind of assignment operation is a C language like operator and is not common in
BASIC programs.

25.118 v /= expression

Divide a variable by an expression.
The variable can be a global or local variable, array element or associative array element.
You can use this command as a shorthand for v = v / expression. Using this short

format is more readable in some cases and generates more efficient code. However note
that this kind of assignment operation is a C language like operator and is not common in
BASIC programs.

25.119 v \= expression

Integer divide a variable by a value.
The variable can be a global or local variable, array element or associative array element.
You can use this command as a shorthand for v = v \ expression. Using this short

format is more readable in some cases and generates more efficient code. However note
that this kind of assignment operation is a C language like operator and is not common in
BASIC programs.

25.120 v -= expression

This command subtracts a value from a variable.
The variable can be a global or local variable, array element or associative array element.
You can use this command as a shorthand for v = v - expression. Using this short

format is more readable in some cases and generates more efficient code. However note
that this kind of assignment operation is a C language like operator and is not common in
BASIC programs.

25.121 v += expression

Add a value to a variable.
The variable can be a global or local variable, array element or associative array element.
You can use this command as a shorthand for v = v + expression. Using this short

format is more readable in some cases and generates more efficient code. However note
that this kind of assignment operation is a C language like operator and is not common in
BASIC programs.

Chapter 25: Command reference 177

25.122 v *= expression

Multiply a variable with a value.
The variable can be a global or local variable, array element or associative array element.
You can use this command as a shorthand for v = v * expression. Using this short

format is more readable in some cases and generates more efficient code. However note
that this kind of assignment operation is a C language like operator and is not common in
BASIC programs.

25.123 string LIKE pattern

Compare a string against a pattern.
string LIKE pattern

The pattern may contain joker characters and wild card characters.

25.123.1 LIKE Details

Pattern matching in ScriptBasic is similar to the pattern matching that you get used
to on the UNIX or Windows NT command line. The operator like compares a string to a
pattern.

string like pattern

Both string and pattern are expressions that should evaluate to a string. If the pattern
matches the string the result of the operator is true, otherwise the result is false.

The pattern may contain normal characters, wild card characters and joker characters.
The normal characters match themselves. The wild card characters match one or more
characters from the set they are for. The joker characters match one character from the set
they stand for. For example:

Const nl="\n"
print "file.txt" like "*.txt",nl
print "file0.txt" like "*?.txt",nl
print "file.text" like "*.txt",nl

will print
-1
-1
0

The wild card character * matches a list of characters of any code. The joker character ?
matches a single character of any code. In the first print statement the * character matches
the string file and .txt matches itself at the end of the string. In the second example *
matches the string file and the joker ? matches the character 0. The wild card character *
is the most general wild card character because it matches one or more of any character.
There are other wild card characters. The character # matches one or more digits, $ matches
one or more alphanumeric characters and finally @ matches one or more alpha characters
(letters).

178 ScriptBasic Users Guide

* all characters
0123456789
$ 0123456789abcdefghijklmnopqrstxyvwzABCDEFGHIJKLMNOPQRSTXYVWZ
abcdefghijklmnopqrstxyvwzABCDEFGHIJKLMNOPQRSTXYVWZ

A space in the pattern matches one or more white spaces, but the space is not a regular
wild card character, because it behaves a bit different.

Note that wild card character match ONE or more characters and not zero or more as
in other systems. Joker characters match exactly one character, and there is only one joker
character by default, the character ?, which matches a single character of any code.

We can match a string to a pattern, but that is little use, unless we can tell what
substring the joker or wildcard characters matched. For the purpose the function joker is
available. The argument of this function is an integer number, n starting from 1 and the
result is the substring that the last pattern matching operator found to match the nth joker
or wild card character. For example

Const nl="\n"
if "file.txt" like "*.*" then
print "File=",joker(1)," extension=",joker(2),nl

else
print "did not match"

endif

will print
File=file extension=txt

If the pattern did not match the string or the argument of the function joker is zero or
negative, or is larger than the serial number of the last joker or wild card character the
result is undef.

Note that there is no separate function for the wild card character substrings and one
for the joker characters. The function joker serves all of them counting each from left to
right. The function joker does not count, nor return the spaces, because programs usually
are not interested in the number of the spaces that separate the lexical elements matched
by the pattern.

Sometimes you want a wild card character or joker character to match only itself. For
example you want to match the string "13*52" to the pattern two numbers separated by
a star. The problem is that the star character is a wild card character and therefore "#*#"
matches any string that starts and ends with a digit. But that may not be a problem. A *
character matches one or more characters, and therefore "#*#" will indeed match "13*52".
The problem is, when we want to use the substrings.

Const nl="\n"
a="13*52" like "#*#"
print joker(1)," ",joker(3),nl
a="13*52" like "#~*#"
print joker(1)," ",joker(2),nl

will print
1 52
13 52

Chapter 25: Command reference 179

The first # character matches one character, the * character matches the substring "3*"
and the final # matches the number 52.

The solution is the pattern escape character. The pattern escape character is the tilde
character: ~. Any character following the ~ character is treated as normal character and
is matched only by itself. This is true for any normal character, for wild card characters;
joker characters; for the space and finally for the tilde character itself. The space character
following the tilde character matches exactly one space characters.

Pattern matching is not always as simple as it seems to be from the previous examples.
The pattern "*.*" matches files having extension and joker(1) and joker(2) can be used
to retrieve the file name and the extension. What about the file sciba_source.tar.gz?
Will it result

File=scriba_source.tar extension=gz

or

File=scriba_source extension=tar.gz

The correct result is the second. Wild card characters implemented in ScriptBasic are
not greedy. They eat up only as many characters as they need.

Up to now we were talking about wild card characters and the joker character defining
what matches what as final rule carved into stone. But these rules are only the default
behavior of these characters and the program can alter the set of characters that a joker or
wild card character matches.

There are 13 characters that can play joker or wild card character role in pattern match-
ing. These are:

* # $? & % ! + / | < >

When the program starts only the first five characters have special meaning the others
are normal characters. To change the role of a character the program has to execute a set
joker or set wild command. The syntax of the commands are:

set joker expression to expression set wild expression to expression

Both expressions should evaluate to string. The first character of the first string should
be the joker or wild card character and the second string should contain all the characters
that the joker or wild card character matches. The command set joker alters the behavior
of the character to be a joker character matching a single character in the compared string.
The command set wild alters the behavior of the character to be a wild card character
matching one or more characters in the compared string. For ex-ample if you may want the
& character to match all hexadecimal characters the program has to execute:

set wild "&" to "0123456789abcdefABCDEF"

If a character is currently a joker of wild card character you can alter it to be a normal
character issuing one of the commands

set no joker expression set no wild expression

where expression should evaluate to a string and the first character of the string should
give the character to alter the behavior of.

The two commands are identical, you may always use one or the other; you can use set
no joker for a character being currently wild card character and vice versa. You can execute

180 ScriptBasic Users Guide

the command even if the character is currently a normal character in the pattern matching
game.

Using the commands now we can see that

25.124 LINE INPUT

Read a line from a file or from the standard input.

The syntax of the command is

LINE INPUT [# i ,] variable

The parameter i is the file number used in the open statement. If this is not specified
the standard input is read.

The variable will hold a single line from the file read containing the possible new line
character terminating the line. If the last line of a file is not terminated by a new line
character then the variable will not contain any new line character. Thus this command
does return only the characters that are really in the file and does not append extra new
line character at the end of the last line if that lacks it.

On the other hand you should not rely on the missing new line character from the end
of the last line because it may and usually it happens to be there. Use rather the function
See 〈undefined〉 [EOF], page 〈undefined〉 to determine if a file reading has reached the end
of the file or not.

See also See 〈undefined〉 [CHOMP], page 〈undefined〉
You can also read from sockets using this command but you should be careful because

data in a socket comes from programs generated on the fly. This means that the socket
pipe may not contain the line terminating new line and not finished as well unlike a file.
Therefore the command may start infinitely long when trying to read from a socket until
the application on the other end of the line sends a new line character or closes the socket.
When you read from a file this may not happen.

Read a line from a file or from the standard input.

The syntax of the command is

LINE INPUT [# i ,] variable

The parameter i is the file number used in the open statement. If this is not specified
the standard input is read.

The variable will hold a single line from the file read containing the possible new line
character terminating the line. If the last line of a file is not terminated by a new line
character then the variable will not contain any new line character. Thus this command
does return only the characters that are really in the file and does not append extra new
line character at the end of the last line if that lacks it.

On the other hand you should not rely on the missing new line character from the end
of the last line because it may and usually it happens to be there. Use rather the function
See 〈undefined〉 [EOF], page 〈undefined〉 to determine if a file reading has reached the end
of the file or not.

See also See 〈undefined〉 [CHOMP], page 〈undefined〉

Chapter 25: Command reference 181

You can also read from sockets using this command but you should be careful because
data in a socket comes from programs generated on the fly. This means that the socket
pipe may not contain the line terminating new line and not finished as well unlike a file.
Therefore the command may start infinitely long when trying to read from a socket until
the application on the other end of the line sends a new line character or closes the socket.
When you read from a file this may not happen.

Read a line from a file or from the standard input.
The syntax of the command is

LINE INPUT [# i ,] variable

The parameter i is the file number used in the open statement. If this is not specified
the standard input is read.

The variable will hold a single line from the file read containing the possible new line
character terminating the line. If the last line of a file is not terminated by a new line
character then the variable will not contain any new line character. Thus this command
does return only the characters that are really in the file and does not append extra new
line character at the end of the last line if that lacks it.

On the other hand you should not rely on the missing new line character from the end
of the last line because it may and usually it happens to be there. Use rather the function
See 〈undefined〉 [EOF], page 〈undefined〉 to determine if a file reading has reached the end
of the file or not.

See also See 〈undefined〉 [CHOMP], page 〈undefined〉
You can also read from sockets using this command but you should be careful because

data in a socket comes from programs generated on the fly. This means that the socket
pipe may not contain the line terminating new line and not finished as well unlike a file.
Therefore the command may start infinitely long when trying to read from a socket until
the application on the other end of the line sends a new line character or closes the socket.
When you read from a file this may not happen.

25.125 LOC()

Return current file pointer position of the opened file. The argument of the function is
the file number that was used by the statement See 〈undefined〉 [OPEN], page 〈undefined〉
opening the file.

This function is the counter part of the statement See 〈undefined〉 [SEEK], page 〈unde-
fined〉 that sets the file pointer position.

The file position is counted in record size. This means that the file pointer stands after
the record returned by the function. This is not necessarily stands right after the record at
the start of the next record actually. It may happen that the file pointer stands somewhere
in the middle of the next record. Therefore the command

SEEK fn,LOC(fn)

may alter the actual file position and can be used to set the file pointer to a safe record
boundary position.

If there was no record size defined when the file was opened the location is counted in
bytes. In this case the returned value precisely defines where the file pointer is. Return

182 ScriptBasic Users Guide

current file pointer position of the opened file. The argument of the function is the file
number that was used by the statement See 〈undefined〉 [OPEN], page 〈undefined〉 opening
the file.

This function is the counter part of the statement See 〈undefined〉 [SEEK], page 〈unde-
fined〉 that sets the file pointer position.

The file position is counted in record size. This means that the file pointer stands after
the record returned by the function. This is not necessarily stands right after the record at
the start of the next record actually. It may happen that the file pointer stands somewhere
in the middle of the next record. Therefore the command

SEEK fn,LOC(fn)

may alter the actual file position and can be used to set the file pointer to a safe record
boundary position.

If there was no record size defined when the file was opened the location is counted in
bytes. In this case the returned value precisely defines where the file pointer is. Return
current file pointer position of the opened file. The argument of the function is the file
number that was used by the statement See 〈undefined〉 [OPEN], page 〈undefined〉 opening
the file.

This function is the counter part of the statement See 〈undefined〉 [SEEK], page 〈unde-
fined〉 that sets the file pointer position.

The file position is counted in record size. This means that the file pointer stands after
the record returned by the function. This is not necessarily stands right after the record at
the start of the next record actually. It may happen that the file pointer stands somewhere
in the middle of the next record. Therefore the command

SEEK fn,LOC(fn)

may alter the actual file position and can be used to set the file pointer to a safe record
boundary position.

If there was no record size defined when the file was opened the location is counted in
bytes. In this case the returned value precisely defines where the file pointer is.

25.126 LOCATLTOGMTIME

This function accepts one argument that has to be the number of seconds elapsed since
January 1, 1970 0:00 am in local time. The function returns the same number of seconds
in GMT. In other words the function converts a local time value to GMT time value.

25.127 LOCK # fn, mode

Lock a file or release a lock on a file. The mode parameter can be read, write or release.
When a file is locked to read no other program is allowed to write the file. This ensures

that the program reading the file gets consistent data from the file. If a program locks a
file to read using the lock value read other programs may also get the read lock, but no
program can get the See 〈undefined〉 [write], page 〈undefined〉 lock. This means that any
program trying to write the file and issuing the command LOCK with the parameter write
will stop and wait until all read locks are released.

Chapter 25: Command reference 183

When a program write locks a file no other program can read the file or write the file.

Note that the different operating systems and therefore ScriptBasic running on different
operating systems implement file lock in different ways. UNIX operating systems implement
so called advisory locking, while Windows NT implements mandatory lock.

This means that a program under UNIX can write a file while another program has a
read or write lock on the file if the other program is not good behaving and does not ask
for a write lock. Therefore this command under UNIX does not guarantee that any other
program is not accessing the file simultaneously.

Contrary Windows NT does lock the file in a hard way, and this means that no other
process can access the file in prohibited way while the file is locked.

This different behavior usually does not make harm, but in some rare cases knowing it
may help in debugging some problems. Generally you should not have a headache because
of this.

You should use this command to synchronize the BASIC programs running parallel and
accessing the same file.

You can also use the command LOCK REGION to lock a part of the file while leaving other
parts of the file accessible to other programs.

If you heavily use record oriented files and file locks you may consider using some data
base module to store the data in database instead of plain files.

25.128 LOCK REGION # fn FROM start TO end FOR
mode

Lock a region of a file. The region starts with the record start and ends with the record
end including both end positions. The length of a record in the file is given when the file is
opened using the statement See 〈undefined〉 [OPEN], page 〈undefined〉.

The mode can be read, write and release. The command works similar as whole
file locking, thus it is recommended that you read the differences of the operating systems
handling locking in the section of file locking for the command LOCK. Lock a region of a
file. The region starts with the record start and ends with the record end including both
end positions. The length of a record in the file is given when the file is opened using the
statement See 〈undefined〉 [OPEN], page 〈undefined〉.

The mode can be read, write and release. The command works similar as whole
file locking, thus it is recommended that you read the differences of the operating systems
handling locking in the section of file locking for the command LOCK. Lock a region of a
file. The region starts with the record start and ends with the record end including both
end positions. The length of a record in the file is given when the file is opened using the
statement See 〈undefined〉 [OPEN], page 〈undefined〉.

The mode can be read, write and release. The command works similar as whole
file locking, thus it is recommended that you read the differences of the operating systems
handling locking in the section of file locking for the command LOCK.

184 ScriptBasic Users Guide

25.129 LOF()

This function returns the length of an opened file in number of records. The argument
of the function has to be the file number that was used by the statement See 〈undefined〉
[OPEN], page 〈undefined〉 to open the file.

The actual number of records is calculated using the record size specified when the
command See 〈undefined〉 [OPEN], page 〈undefined〉 was used. The returned number is the
number of records that fit in the file. If the file is longer containing a fractional record at
the end the fractional record is not counted.

If there was no record length specified when the file was opened the length of the file is
returned in number of bytes. In this case fractional record has no meaning. This function
returns the length of an opened file in number of records. The argument of the function has
to be the file number that was used by the statement See 〈undefined〉 [OPEN], page 〈un-
defined〉 to open the file.

The actual number of records is calculated using the record size specified when the
command See 〈undefined〉 [OPEN], page 〈undefined〉 was used. The returned number is the
number of records that fit in the file. If the file is longer containing a fractional record at
the end the fractional record is not counted.

If there was no record length specified when the file was opened the length of the file is
returned in number of bytes. In this case fractional record has no meaning. This function
returns the length of an opened file in number of records. The argument of the function has
to be the file number that was used by the statement See 〈undefined〉 [OPEN], page 〈un-
defined〉 to open the file.

The actual number of records is calculated using the record size specified when the
command See 〈undefined〉 [OPEN], page 〈undefined〉 was used. The returned number is the
number of records that fit in the file. If the file is longer containing a fractional record at
the end the fractional record is not counted.

If there was no record length specified when the file was opened the length of the file is
returned in number of bytes. In this case fractional record has no meaning.

25.130 LOG

Calculates the natural log of the argument. If the argument is zero or less than zero the
result is undef.

If the result is within the range of an integer value on the actual architecture then the
result is returned as an integer, otherwise it is returned as a real value.

LOG(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

25.131 LOG10

Calculates the log of the argument. If the argument is zero or less than zero the result
is undef

Chapter 25: Command reference 185

If the result is within the range of an integer value on the actual architecture then the
result is returned as an integer, otherwise it is returned as a real value.

LOG10(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

25.132 LTRIM()

Remove the space from the left of the string.

25.133 MAX

This is a planned function to select and return the maximum of the arguments.

25.134 MAXINT

This built-in constant is implemented as an argument less function. Returns the maximal
number that can be stored as an integer value.

25.135 MID(string,start [,len])

Return a subpart of the string. The first argument is the string, the second argument is
the start position. The third argument is the length of the sub-part in terms of characters.
If this argument is missing then the subpart lasts to the last character of the argument
string.

See also See 〈undefined〉 [LEFT], page 〈undefined〉, See 〈undefined〉 [RIGHT], page 〈un-
defined〉.

25.135.1 MID Details

mid(x,y,[z]) cuts out a sub-string from the string x. If the first argument of the
function is undefined the result is undef. Otherwise the first argument is converted to
string and the second and third arguments are converted to numeric value. The third
argument is optional.

The second argument specifies the start position of the resulting substring in the original
string x; and the last argument specifies the number of characters to take from the original
string x. If the third argument is missing the substring lasts from the start position to the
end of the string. If the second argu-ment is not defined the start of the substring is at
the start of the original string. In other words if the second argument is missing it is the
same as value 1. If the second argument is zero or negative it will specify the start position
counting the characters from the end of the string.

If the staring position y points beyond the end of the string the result is empty string.
If the length of the substring is larger than the number of characters between the starting
position and end of the original string then the result will be the substring between the
start position and the end of the original string.

186 ScriptBasic Users Guide

If the length of the substring is negative the characters before the starting position are
taken. No more than the available characters can be taken in this case either. In other
words if the length is negative and is larger in absolute value than the starting position the
resulting sub-string is the character between the position specified by the second argument
and the start of the string.

Note that the order of the characters is never changed even if some position or length
parameters are negative.

For compatibility reasons you can append a dollar ($) sign to the end of the function
identifier.

Example:

a$ = "superqualifragilisticexpialidosys"
print mid(a$,undef)
print mid(a$,1,5)
print mid(a$,undef,6)
print mid(a$,6,5)
print mid(a$,"-3")
print "*",mid(a$,0),"*"
print mid(undef,"66")
print mid(a$,6,-3)
print mid(a$,6,3)
print mid(a$,-4,-3)
print mid(a$,-4,3)

will print

superqualifragilisticexpialidosys
super
superq
quali
sys
**
undef
erq
qua
ido
osy

25.136 MIN

This is a planned function to select and return the minimum of the arguments.

25.137 MININT

This built-in constant is implemented as an argument less function. Returns the minimal
("maximal negative") number that can be stored as an integer value.

Chapter 25: Command reference 187

25.138 MINUTE

This function accepts one argument that should express the time in number of seconds
since January 1, 1970 0:00 am and returns the minute value of that time. If the argument
is missing it uses the actual local time.

25.139 MKD

This is a planned function to convert the argument real number to an 8 byte string.
Converts the double-precision number "n" into an 8-byte string so it can later be re-

trieved from a random-access file as a numeric value.

25.140 MKDIR directory name

This command creates a new directory. If it is needed then the command attempts
to create all directories automatically that are needed to create the final directory. For
example if you want to create public_html/cgi-bin but the directory public_html does
not exist then the command

MKDIR "public_html/cgi-bin"

will first create the directory public_html and then cgi-bin under that directory.
If the directory can not be created for some reason an error is raised.
This is not an error if the directory does already exist.
You need not call this function when you want to create a file using the command See

〈undefined〉 [OPEN], page 〈undefined〉. The command See 〈undefined〉 [OPEN], page 〈un-
defined〉 automatically creates the needed directory when a file is opened to be written.

The created directory can be erased calling the command See 〈undefined〉 [DELETE],
page 〈undefined〉 or calling the dangerous command See 〈undefined〉 [DELTREE], page 〈un-
defined〉.

This command creates a new directory. If it is needed then the command attempts
to create all directories automatically that are needed to create the final directory. For
example if you want to create public_html/cgi-bin but the directory public_html does
not exist then the command

MKDIR "public_html/cgi-bin"

will first create the directory public_html and then cgi-bin under that directory.
If the directory can not be created for some reason an error is raised.
This is not an error if the directory does already exist.
You need not call this function when you want to create a file using the command See

〈undefined〉 [OPEN], page 〈undefined〉. The command See 〈undefined〉 [OPEN], page 〈un-
defined〉 automatically creates the needed directory when a file is opened to be written.

The created directory can be erased calling the command See 〈undefined〉 [DELETE],
page 〈undefined〉 or calling the dangerous command See 〈undefined〉 [DELTREE], page 〈un-
defined〉.

188 ScriptBasic Users Guide

This command creates a new directory. If it is needed then the command attempts
to create all directories automatically that are needed to create the final directory. For
example if you want to create public_html/cgi-bin but the directory public_html does
not exist then the command

MKDIR "public_html/cgi-bin"

will first create the directory public_html and then cgi-bin under that directory.

If the directory can not be created for some reason an error is raised.

This is not an error if the directory does already exist.

You need not call this function when you want to create a file using the command See
〈undefined〉 [OPEN], page 〈undefined〉. The command See 〈undefined〉 [OPEN], page 〈un-
defined〉 automatically creates the needed directory when a file is opened to be written.

The created directory can be erased calling the command See 〈undefined〉 [DELETE],
page 〈undefined〉 or calling the dangerous command See 〈undefined〉 [DELTREE], page 〈un-
defined〉.

25.141 MKI

This is a planned function to convert the argument integer number to an 2 byte string.

Converts the integer number "n" into an 2-byte string so it can later be retrieved from
a random-access file as a numeric value.

25.142 MKL

This is a planned function.

Converts the long-integer number "n" into an 4-byte string so it can later be retrieved
from a random-access file as a numeric value.

25.143 MKS

This is a planned function.

Converts the single-precision number "n" into an 4-byte string so it can later be retrieved
from a random-access file as a numeric value.

25.144 MONTH

This function accepts one argument that should express the time in number of seconds
since January 1, 1970 0:00 am and returns the month (1 to 12) value of that time. If the
argument is missing it uses the actual local time. In other words it returns the actual month
in this latter case. The months are numbered so that January is 1 and December is 12.

Chapter 25: Command reference 189

25.145 NAME filename,filename

Rename a file. The first file is the existing one, the second is the new name of the file.
You can not move filed from one disk to another using this command. This command merely
renames a single file. Also you can not use wild characters in the source or destination file
name.

If you can not rename a file for some reason, you can try to use the command See 〈unde-
fined〉 [FileCopy], page 〈undefined〉 and then delete the old file. This is successful in some
of the cases when NAME fails, but it is a slower method.

If the file can not be renamed then the command raises error.

Rename a file. The first file is the existing one, the second is the new name of the file.
You can not move filed from one disk to another using this command. This command merely
renames a single file. Also you can not use wild characters in the source or destination file
name.

If you can not rename a file for some reason, you can try to use the command See 〈unde-
fined〉 [FileCopy], page 〈undefined〉 and then delete the old file. This is successful in some
of the cases when NAME fails, but it is a slower method.

If the file can not be renamed then the command raises error.

Rename a file. The first file is the existing one, the second is the new name of the file.
You can not move filed from one disk to another using this command. This command merely
renames a single file. Also you can not use wild characters in the source or destination file
name.

If you can not rename a file for some reason, you can try to use the command See 〈unde-
fined〉 [FileCopy], page 〈undefined〉 and then delete the old file. This is successful in some
of the cases when NAME fails, but it is a slower method.

If the file can not be renamed then the command raises error.

25.146 NEXTFILE(dn)

Retrieve the next file name from an opened directory list. If there is no more file names
it returns undef.

See also See 〈undefined〉 [OPENDIR], page 〈undefined〉 and See 〈undefined〉
[CLOSEDIR], page 〈undefined〉.

Retrieve the next file name from an opened directory list. If there is no more file names
it returns undef.

See also See 〈undefined〉 [OPENDIR], page 〈undefined〉 and See 〈undefined〉
[CLOSEDIR], page 〈undefined〉.

Retrieve the next file name from an opened directory list. If there is no more file names
it returns undef.

See also See 〈undefined〉 [OPENDIR], page 〈undefined〉 and See 〈undefined〉
[CLOSEDIR], page 〈undefined〉.

190 ScriptBasic Users Guide

25.147 NOW

This function returns the local time expressed as seconds since January 1, 1970, 00:00am.
The function does not accept any argument. This function is similar to the function See
〈undefined〉 [GMTIME], page 〈undefined〉 but returns the local time instead of the actual
GMT.

25.148 OCT(n)

Take the argument as a long value and convert it to a string that represents the value
in octal form.

25.149 ODD

Return true if the argument is an odd number. ODD(undef) is undef or raises an error
if the option RaiseMatherror is set in bit sbMathErrUndef.

See also See 〈undefined〉 [EVEN], page 〈undefined〉

25.150 ON ERROR GOTO [label | NULL]

Set the entry point of the error handling routine. If the argument is NULL then the error
handling is switched off.

25.151 ON ERROR RESUME [label | next]

Setting ON ERROR RESUME will try to continue execution on the label or on the next
statement when an error occurs without any error handling code.

See also See 〈undefined〉 [ONERRORGOTO], page 〈undefined〉, See 〈undefined〉 [RE-
SUME], page 〈undefined〉 and See 〈undefined〉 [ERROR], page 〈undefined〉.

25.152 OPEN file name FOR mode AS [#] i [
LEN=record length]

Open or create and open a file. The syntax of the line is
OPEN file_name FOR mode AS [#] i [LEN=record_length]

The parameters:
file_name if the name of the file to be opened. If the mode allows the file to be written
the file is created if it did not existed before. If needed, directory is created for the file.
mode is the mode the file is opened. It can be:

input open the file for reading. In this mode the file is opened in read only mode
and can not be altered using the file number associated with the open file. Using
any function or command that tries to write the file will result in error. In this

Chapter 25: Command reference 191

mode the file has to exist already to open successfully. If the file to be opened for
input does not exist the command OPEN raises an error.
output open the file for writing. If the file existed it’s content is deleted first and
a freshly opened empty file is ready to accept commands and functions to write
into the file. When a file is opened this way no function or command trying to
read from the file can be used using the file number associated with the file. The
file is opened in ASCII mode but the handling mode can be changed to binary any
time.
append open a possibly existing file and write after the current content. The same
conditions apply as in the mode output, thus you can not read the file, only write.
The file is opened in ASCII mode but the handling mode can be changed to binary
any time.
random open the file for reading and writing (textual mode). When you open a file
using this mode the file can be written and the content of the existing file can be
read. The file pointer can be moved back and forth any time using the command
See 〈undefined〉 [SEEK], page 〈undefined〉 and thus quite complex file handling
functions can be implemented. If the file did not exist it is created.
binary open the file for reading and writing (binary mode). This mode is the
same as random with the exception that the file is opened in binary mode.
socket open a socket. In this case the file name is NOT a file name, but rather an
Internet machine name and a port separated by colon, like www.digital.com:80
You should not specify any method, like http:// in front of the machine name,
as this command opens a TCP socket to the machine’s port and the protocol has
to be implemented by the BASIC program.

#i is the file number. After the file has been opened this number has to be used in later
file handling functions and commands, like See 〈undefined〉 [CLOSE], page 〈undefined〉
to refer to the file. The # character is optional and is allowed for compatibility with
other BASIC languages. The number can be between 1 and 512. This number is quite
big for most of the applications and provides compatibility with VisualBasic.
record_length is optional and specify the length of a record in the file. The default
record length is 1 byte. File pointer setting commands usually work on records, thus
See 〈undefined〉 [SEEK], page 〈undefined〉, See 〈undefined〉 [TRUNCATE], page 〈unde-
fined〉 and other commands and functions accept arguments or return values as number
of records. The actual record length is not recorded anywhere thus the BASIC program
has to remember the actual length of a record in a file. This is not a BASIC program
error to open a file with a different record size than it was created, although this may
certainly be a programming error.

If the file number is specified as a variable and the variable value is set to integer zero
then the command will automatically find a usable file number and set the variable to hold
that value. Using any other expression of value integer zero is an error. Open or create and
open a file. The syntax of the line is

OPEN file_name FOR mode AS [#] i [LEN=record_length]

The parameters:
file_name if the name of the file to be opened. If the mode allows the file to be written
the file is created if it did not existed before. If needed, directory is created for the file.

192 ScriptBasic Users Guide

mode is the mode the file is opened. It can be:
input open the file for reading. In this mode the file is opened in read only mode
and can not be altered using the file number associated with the open file. Using
any function or command that tries to write the file will raise error. In this mode
the file has to exist already to open successfully. If the file to be opened for input
does not exist the command raises error.
output open the file for writing. If the file existed it’s content is deleted first and
a freshly opened empty file is ready to accept commands and functions to write
into the file. When a file is opened this way no function or command trying to
read from the file can be used using the file number associated with the file. The
file is opened in ASCII mode but the handling mode can be changed to binary any
time.
append open a possibly existing file and write after the current content. The same
conditions apply as in the mode output, thus you can not read the file, only write.
The file is opened in ASCII mode but the handling mode can be changed to binary
any time.
random open the file for reading and writing (textual mode). When you open a file
using this mode the file can be written and the content of the existing file can be
read. The file pointer can be moved back and forth any time using the command
See 〈undefined〉 [SEEK], page 〈undefined〉 and thus quite complex file handling
functions can be implemented. If the file did not exist it is created.
binary open the file for reading and writing (binary mode). This mode is the
same as random with the exception that the file is opened in binary mode.
socket open a socket. In this case the file name is NOT a file name, but rather an
Internet machine name and a port separated by colon, like www.digital.com:80
You should not specify any method, like http:// in front of the machine name,
as this command opens a TCP socket to the machine’s port and the protocol has
to be implemented by the BASIC program.

#i is the file number. After the file has been opened this number has to be used in later
file handling functions and commands, like See 〈undefined〉 [CLOSE], page 〈undefined〉
to refer to the file. The # character is optional and is allowed for compatibility with
other BASIC languages. The number can be between 1 and 512. This number is quite
big for most of the applications and provides compatibility with VisualBasic.
record_length is optional and specify the length of a record in the file. The default
record length is 1 byte. File pointer setting commands usually work on records, thus
See 〈undefined〉 [SEEK], page 〈undefined〉, See 〈undefined〉 [TRUNCATE], page 〈unde-
fined〉 and other commands and functions accept arguments or return values as number
of records. The actual record length is not recorded anywhere thus the BASIC program
has to remember the actual length of a record in a file. This is not a BASIC program
error to open a file with a different record size than it was created, although this may
certainly be a programming error.

If the file number is specified as a variable and the variable value is set to integer zero
then the command will automatically find a usable file number and set the variable to hold
that value. Using any other expression of value integer zero is an error. Open or create and
open a file. The syntax of the line is

Chapter 25: Command reference 193

OPEN file_name FOR mode AS [#] i [LEN=record_length]

The parameters:
file_name if the name of the file to be opened. If the mode allows the file to be written
the file is created if it did not existed before. If needed, directory is created for the file.
mode is the mode the file is opened. It can be:

input open the file for reading. In this mode the file is opened in read only mode
and can not be altered using the file number associated with the open file. Using
any function or command that tries to write the file will result in error. In this
mode the file has to exist already to open successfully. If the file to be opened for
input does not exist the command OPEN raises an error.
output open the file for writing. If the file existed it’s content is deleted first and
a freshly opened empty file is ready to accept commands and functions to write
into the file. When a file is opened this way no function or command trying to
read from the file can be used using the file number associated with the file. The
file is opened in ASCII mode but the handling mode can be changed to binary any
time.
append open a possibly existing file and write after the current content. The same
conditions apply as in the mode output, thus you can not read the file, only write.
The file is opened in ASCII mode but the handling mode can be changed to binary
any time.
random open the file for reading and writing (textual mode). When you open a file
using this mode the file can be written and the content of the existing file can be
read. The file pointer can be moved back and forth any time using the command
See 〈undefined〉 [SEEK], page 〈undefined〉 and thus quite complex file handling
functions can be implemented. If the file did not exist it is created.
binary open the file for reading and writing (binary mode). This mode is the
same as random with the exception that the file is opened in binary mode.
socket open a socket. In this case the file name is NOT a file name, but rather an
Internet machine name and a port separated by colon, like www.digital.com:80
You should not specify any method, like http:// in front of the machine name,
as this command opens a TCP socket to the machine’s port and the protocol has
to be implemented by the BASIC program.

#i is the file number. After the file has been opened this number has to be used in later
file handling functions and commands, like See 〈undefined〉 [CLOSE], page 〈undefined〉
to refer to the file. The # character is optional and is allowed for compatibility with
other BASIC languages. The number can be between 1 and 512. This number is quite
big for most of the applications and provides compatibility with VisualBasic.
record_length is optional and specify the length of a record in the file. The default
record length is 1 byte. File pointer setting commands usually work on records, thus
See 〈undefined〉 [SEEK], page 〈undefined〉, See 〈undefined〉 [TRUNCATE], page 〈unde-
fined〉 and other commands and functions accept arguments or return values as number
of records. The actual record length is not recorded anywhere thus the BASIC program
has to remember the actual length of a record in a file. This is not a BASIC program
error to open a file with a different record size than it was created, although this may
certainly be a programming error.

194 ScriptBasic Users Guide

If the file number is specified as a variable and the variable value is set to integer zero
then the command will automatically find a usable file number and set the variable to hold
that value. Using any other expression of value integer zero is an error.

25.153 OPEN DIRECTORY dir name PATTERN pattern
OPTION option AS dn

Open a directory to retrieve the list of files.

dir_name is the name of the directory.
pattern is a wild card pattern to filter the file list.
option is an integer value that can be composed AND-ing some of the following values

SbCollectDirectories Collect the directory names as well as file names into the
file list.
SbCollectDots Collect the virtual . and .. directory names into the list.
SbCollectRecursively Collect the files from the directory and from all the direc-
tories below.
SbCollectFullPath The list will contain the full path to the file names. This
means that the file names returned by the function See 〈undefined〉 [NextFile],
page 〈undefined〉 will contain the directory path specified in the open directory
statement and therefore can be used as argument to file handling commands and
functions.
SbCollectFiles Collect the files. This is the default behavior.
SbSortBySize The files will be sorted by file size.
SbSortByCreateTime The files will be sorted by creation time.
SbSortByAccessTime The files will be sorted by access time.
SbSortByModifyTime The files will be sorted by modify time.
SbSortByName The files will be sorted by name. The name used for sorting is the
bare file name without any path.
SbSortByPath The files will be sorted by name including the path. The path is the
relative to the directory, which is currently opened. This sorting option is different
from the value sbSortByName only when the value sbCollectRecursively is also
used.
SbSortAscending Sort the file names in ascending order. This is the default
behavior.
SbSortDescending Sort the file names in descending order.
SbSortByNone Do not sort. Specify this value if you do not need sorting. In this
case directory opening can be much faster especially for large directories.

dn is the directory number used in later references to the opened directory.

Note that this command can execute for a long time and consuming a lot of memory
especially when directory listing is requested recursively. When the command is executed it
collects the names of the files in the directory or directories as requested and builds up an

Chapter 25: Command reference 195

internal list of the file names in the memory. The command See 〈undefined〉 [NEXTFILE],
page 〈undefined〉 uses the list to retrieve the next file name from the list.

This implies to facts:
The function NEXTFILE will not ever return a file name that the file was created after,
and did not exist when the command OPEN DIRECTORY was executed.
Using See 〈undefined〉 [CLOSEDIR], page 〈undefined〉 after the list of the files is not
needed as soon as possible is a good idea.

Using a directory number that was already used and not released calling See 〈undefined〉
[CLOSEDIR], page 〈undefined〉 raises an error.

If the list of the files in the directory can not be collected the command raises error.
See also See 〈undefined〉 [CLOSEDIR], page 〈undefined〉 and See 〈undefined〉

[NEXTFILE], page 〈undefined〉.
Open a directory to retrieve the list of files.
dir_name is the name of the directory.
pattern is a wild card pattern to filter the file list.
option is an integer value that can be composed AND-ing some of the following values

SbCollectDirectories Collect the directory names as well as file names into the
file list.
SbCollectDots Collect the virtual . and .. directory names into the list.
SbCollectRecursively Collect the files from the directory and from all the direc-
tories below.
SbCollectFullPath The list will contain the full path to the file names. This
means that the file names returned by the function See 〈undefined〉 [NextFile],
page 〈undefined〉 will contain the directory path specified in the open directory
statement and therefore can be used as argument to file handling commands and
functions.
SbCollectFiles Collect the files. This is the default behavior.
SbSortBySize The files will be sorted by file size.
SbSortByCreateTime The files will be sorted by creation time.
SbSortByAccessTime The files will be sorted by access time.
SbSortByModifyTime The files will be sorted by modify time.
SbSortByName The files will be sorted by name. The name used for sorting is the
bare file name without any path.
SbSortByPath The files will be sorted by name including the path. The path is the
relative to the directory, which is currently opened. This sorting option is different
from the value sbSortByName only when the value sbCollectRecursively is also
used.
SbSortAscending Sort the file names in ascending order. This is the default
behavior.
SbSortDescending Sort the file names in descending order.
SbSortByNone Do not sort. Specify this value if you do not need sorting. In this
case directory opening can be much faster especially for large directories.

196 ScriptBasic Users Guide

dn is the directory number used in later references to the opened directory.

Note that this command can execute for a long time and consuming a lot of memory
especially when directory listing is requested recursively. When the command is executed it
collects the names of the files in the directory or directories as requested and builds up an
internal list of the file names in the memory. The command See 〈undefined〉 [NEXTFILE],
page 〈undefined〉 uses the list to retrieve the next file name from the list.

This implies to facts:
The function NEXTFILE will not ever return a file name that the file was created after,
and did not exist when the command OPEN DIRECTORY was executed.
Using See 〈undefined〉 [CLOSEDIR], page 〈undefined〉 after the list of the files is not
needed as soon as possible is a good idea.

Using a directory number that was already used and not released calling See 〈undefined〉
[CLOSEDIR], page 〈undefined〉 raises an error.

If the list of the files in the directory can not be collected the command raises error.
See also See 〈undefined〉 [CLOSEDIR], page 〈undefined〉 and See 〈undefined〉

[NEXTFILE], page 〈undefined〉.
Open a directory to retrieve the list of files.
dir_name is the name of the directory.
pattern is a wild card pattern to filter the file list.
option is an integer value that can be composed AND-ing some of the following values

SbCollectDirectories Collect the directory names as well as file names into the
file list.
SbCollectDots Collect the virtual . and .. directory names into the list.
SbCollectRecursively Collect the files from the directory and from all the direc-
tories below.
SbCollectFullPath The list will contain the full path to the file names. This
means that the file names returned by the function See 〈undefined〉 [NextFile],
page 〈undefined〉 will contain the directory path specified in the open directory
statement and therefore can be used as argument to file handling commands and
functions.
SbCollectFiles Collect the files. This is the default behavior.
SbSortBySize The files will be sorted by file size.
SbSortByCreateTime The files will be sorted by creation time.
SbSortByAccessTime The files will be sorted by access time.
SbSortByModifyTime The files will be sorted by modify time.
SbSortByName The files will be sorted by name. The name used for sorting is the
bare file name without any path.
SbSortByPath The files will be sorted by name including the path. The path is the
relative to the directory, which is currently opened. This sorting option is different
from the value sbSortByName only when the value sbCollectRecursively is also
used.

Chapter 25: Command reference 197

SbSortAscending Sort the file names in ascending order. This is the default
behavior.

SbSortDescending Sort the file names in descending order.

SbSortByNone Do not sort. Specify this value if you do not need sorting. In this
case directory opening can be much faster especially for large directories.

dn is the directory number used in later references to the opened directory.

Note that this command can execute for a long time and consuming a lot of memory
especially when directory listing is requested recursively. When the command is executed it
collects the names of the files in the directory or directories as requested and builds up an
internal list of the file names in the memory. The command See 〈undefined〉 [NEXTFILE],
page 〈undefined〉 uses the list to retrieve the next file name from the list.

This implies to facts:

The function NEXTFILE will not ever return a file name that the file was created after,
and did not exist when the command OPEN DIRECTORY was executed.

Using See 〈undefined〉 [CLOSEDIR], page 〈undefined〉 after the list of the files is not
needed as soon as possible is a good idea.

Using a directory number that was already used and not released calling See 〈undefined〉
[CLOSEDIR], page 〈undefined〉 raises an error.

If the list of the files in the directory can not be collected the command raises error.

See also See 〈undefined〉 [CLOSEDIR], page 〈undefined〉 and See 〈undefined〉
[NEXTFILE], page 〈undefined〉.

25.154 OPTION symbol value

Set the integer value of an option. The option can be any string without the double
quote. Option names are case insensitive in ScriptBasic.

This command has no other effect than storing the integer value in the option symbol
table. The commands or extenal modules may access the values and may change their
behavior accoring to the actual values associated with option symbols.

You can retrieve the actual value of an option symbol using the function See 〈undefined〉
[OPTIONF], page 〈undefined〉

25.155 OPTION("symbol")

Retrieve the actual value of an option symbol as an integer or undef if the option was
not set. Unlike in the command See 〈undefined〉 [OPTION], page 〈undefined〉 the argument
of this function should be double quoted.

198 ScriptBasic Users Guide

25.156 pack("format",v1,v2,...,vn)

Pack list of arguments into a binary string.

The format strings can contain the packing control literals. Each of these characters
optionally take the next argument and convert to the specific binary string format. The
result is the concatenated sum of these strings.

Some control characters do not take argument, but result a constant string by their own.

SZ the argument is stored as zero terminated string. If the argument already contains
zchar that is taken as termnator and the rest of the string is ignored.

S1 the argument is stored as a string. One byte length and maximum 255 byte strings.
If the argument longer than 255 bytes only the first 255 bytes are used, and the rest is
ignored.

S2 same as S1 but with two bytes for the length.

S3 same as S1 but with three bytes for the length.

S4 same as S1 but with four bytes for the length.

S5..8 the same as S1 but with 5..8 bytes for the length.

Zn one or more zero characters, does not take argument. n can be 1,2,3 ... positive
numbers

In integer number stored on n bytes. Low order byte first. If the number does not fit
into n bytes the higher bytes are chopped. If the number is negative the high overflow
bytes are filled with FF.

C character (same as I1)

Un same as In but for unsigned numbers.

An store the argument as string on n bytes. If the argument is longer than n bytes only
the first n bytes are stored. If the argument is shorter than n bytes the higher bytes
are filled with space.

R a real number.

See also See 〈undefined〉 [UNPACK], page 〈undefined〉

25.157 PAUSE

This is a planned command.

PAUSE n

Suspend the execution of the interpreter (process or thread) for n milliseconds.

25.158 PI

This built-in constant is implemented as an argument less function. Returns the ap-
proximate value of the constant PI which is the ratio of the circumference of a circle to its
diameter.

Chapter 25: Command reference 199

25.159 POP

Pop off one value from the GOSUB/RETURN stack. After this command a RETURN will
return to one level higher and to the place where it was called from. For more information
see the documentation of the command See 〈undefined〉 [GOSUB], page 〈undefined〉 and
See 〈undefined〉 [RETURN], page 〈undefined〉.

25.160 POW

Calculates the x-th exponent of 10. If the result is within the range of an integer value
on the actual architecture then the result is returned as an integer, otherwise it is returned
as a real value.

POW(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

25.161 PRINT [# fn ,] print list

This command prints the elements of the print_list. The argument print_list is a
comma separated list of expressions. The expressions are evaluated one after the other and
are printed to the standard output or to the file.

The command prints the print_list to an opened file given by the file number fn. If
fn (along with the # character) is not specified the command prints to the standard output.
The file has to be opened to some "output" mode otherwise the command fails to print
anything into the file. The command can also print into an opened socket (a file opened for
mode socket). If the file is not opened then the expressions in the list print_list are not
evaluated and the command actually does nothing. If the file is opened, but not for a kind
of "output" mode then the expressions in the print_list are evaluated but the printing
does not happen. Neither printing to a non-opened file number nor printing to a file opened
for some read-only mode generates error.

If there is no print_list specified the command prints a new line. In other words if
the keyword PRINT stands on the command with the optional # and the file number but
without anything to print then the command will print a new line character.

Note that unlike other BASIC implementations the command PRINT does not accept
print list formatters, like AT or semicolons and does not tabify the output. The arguments
are printed to the file or to the standard output one after the other without any intrinsic
space or tab added. Also the print statements does not print a new line at the end of the
print list unless the new line character is explicitly defined or if there is no print list at all
following the command.

This command prints the elements of the print_list. The argument print_list is a
comma separated list of expressions. The expressions are evaluated one after the other and
are printed to the standard output or to the file.

The command prints the print_list to an opened file given by the file number fn. If
fn (along with the # character) is not specified the command prints to the standard output.
The file has to be opened to some "output" mode otherwise the command fails to print

200 ScriptBasic Users Guide

anything into the file. The command can also print into an opened socket (a file opened for
mode socket). If the file is not opened then the expressions in the list print_list are not
evaluated and the command actually does nothing. If the file is opened, but not for a kind
of "output" mode then the expressions in the print_list are evaluated but the printing
does not happen. Neither printing to a non-opened file number nor printing to a file opened
for some read-only mode generates error.

If there is no print_list specified the command prints a new line. In other words if
the keyword PRINT stands on the command with the optional # and the file number but
without anything to print then the command will print a new line character.

Note that unlike other BASIC implementations the command PRINT does not accept
print list formatters, like AT or semicolons and does not tabify the output. The arguments
are printed to the file or to the standard output one after the other without any intrinsic
space or tab added. Also the print statements does not print a new line at the end of the
print list unless the new line character is explicitly defined or if there is no print list at all
following the command.

This command prints the elements of the print_list. The argument print_list is a
comma separated list of expressions. The expressions are evaluated one after the other and
are printed to the standard output or to the file.

The command prints the print_list to an opened file given by the file number fn. If
fn (along with the # character) is not specified the command prints to the standard output.
The file has to be opened to some "output" mode otherwise the command fails to print
anything into the file. The command can also print into an opened socket (a file opened for
mode socket). If the file is not opened then the expressions in the list print_list are not
evaluated and the command actually does nothing. If the file is opened, but not for a kind
of "output" mode then the expressions in the print_list are evaluated but the printing
does not happen. Neither printing to a non-opened file number nor printing to a file opened
for some read-only mode generates error.

If there is no print_list specified the command prints a new line. In other words if
the keyword PRINT stands on the command with the optional # and the file number but
without anything to print then the command will print a new line character.

Note that unlike other BASIC implementations the command PRINT does not accept
print list formatters, like AT or semicolons and does not tabify the output. The arguments
are printed to the file or to the standard output one after the other without any intrinsic
space or tab added. Also the print statements does not print a new line at the end of the
print list unless the new line character is explicitly defined or if there is no print list at all
following the command.

25.162 RANDOMIZE

Seed the random number generator. If the command is presented without argument the
random number generator is seed with the actual time. If argument is provided the random
number generator is seed with the argument following the keyword RANDOMIZE.

Chapter 25: Command reference 201

25.163 ref v1 = v2

Assign a variable to reference another variable. Following this command altering one of
the variables alters both variables. In other words this command can be used to define a
kind of alias to a variable. The mechanism is the same as local variable of a function is an
alias of a variable passed to the function as actual argument. The difference is that this
reference is not automatically released when some function returns, but rather it is alive so
long as long the referencing variable is not undefined saying undef variable in a command.

To have an alias to a variable is not something of a great value though. It becomes a
real player when the ’variable’ is not just an ordinary ’named’ variable but rather part of an
array (or associative array). Using this mechanisms the programmer can build up arbitrary
complex memory structures without caring such complex things as pointers for example in
C. This is a simple BASIC way of building up complex memory structures.

25.164 REPEAT

This command implements a loop which is repeated so long as long the expression
standing after the loop closing line UNTIL becomes true. The loop starts with a line
containing the keyword REPEAT and finishes with the line UNTIL expression.

repeat
...
commands to repeat
...

until expression

The expression is evaluated each time after the loop is executed. This means that the
commands inside the loop are executed at least once.

This kind of loop syntax is not usual in BASIC dialects but can be found in languages
like PASCAL. Implementing this loop in ScriptBasic helps those programmers, who have
PASCAL experience.

See also See 〈undefined〉 [WHILE], page 〈undefined〉, See 〈undefined〉 [DOUNTIL],
page 〈undefined〉, See 〈undefined〉 [DOWHILE], page 〈undefined〉, See 〈undefined〉
[REPEAT], page 〈undefined〉, See 〈undefined〉 [DO], page 〈undefined〉 and See 〈undefined〉
[FOR], page 〈undefined〉.

25.165 REPLACE(base string,search string,replace string
[,number of replaces] [,position])

This function replaces one or more occurrences of a sub-string in a string.
REPLACE(a,b,c) searches the string a seeking for occurrences of sub-string b and replaces
each of them with the string c.

The fourth and fifth arguments are optional. The fourth argument specifies the number
of replaces to be performed. If this is missing or is undef then all occurrences of string b
will be replaced. The fifth argument may specify the start position of the operation. For
example the function call

202 ScriptBasic Users Guide

REPLACE("alabama mama", "a","x",3,5)

will replace only three occurrences of string "a" starting at position 5. The result is
"alabxmx mxma".

25.166 RESET

This command closes all files opened by the current BASIC program. This command
usually exists in most BASIC implementation. There is no need to close a file before a
BASIC program finishes, because the interpreter automatically closes all files that were
opened by the program.

This command closes all files opened by the current BASIC program. This command
usually exists in most BASIC implementation. There is no need to close a file before a
BASIC program finishes, because the interpreter automatically closes all files that were
opened by the program.

This command closes all files opened by the current BASIC program. This command
usually exists in most BASIC implementation. There is no need to close a file before a
BASIC program finishes, because the interpreter automatically closes all files that were
opened by the program.

25.167 RESET DIRECTORY [#] dn

Reset the directory file name list and start from the first file name when the next call to
See 〈undefined〉 [NEXTFILE], page 〈undefined〉 is performed.

See also See 〈undefined〉 [OPENDIR], page 〈undefined〉, See 〈undefined〉 [CLOSEDIR],
page 〈undefined〉, See 〈undefined〉 [NEXTFILE], page 〈undefined〉, See 〈undefined〉 [EOD],
page 〈undefined〉.

Reset the directory file name list and start from the first file name when the next call to
See 〈undefined〉 [NEXTFILE], page 〈undefined〉 is performed.

See also See 〈undefined〉 [OPENDIR], page 〈undefined〉, See 〈undefined〉 [CLOSEDIR],
page 〈undefined〉, See 〈undefined〉 [NEXTFILE], page 〈undefined〉, See 〈undefined〉 [EOD],
page 〈undefined〉.

Reset the directory file name list and start from the first file name when the next call to
See 〈undefined〉 [NEXTFILE], page 〈undefined〉 is performed.

See also See 〈undefined〉 [OPENDIR], page 〈undefined〉, See 〈undefined〉 [CLOSEDIR],
page 〈undefined〉, See 〈undefined〉 [NEXTFILE], page 〈undefined〉, See 〈undefined〉 [EOD],
page 〈undefined〉.

25.168 RESUME [label | next]

Resume the program execution after handling the error. RESUME without argument
tries to execute the same line again that caused the error. RESUME NEXT tries to continue
execution after the line that caused the error. RESUME label tries to continue execution at
the specified label.

Chapter 25: Command reference 203

See also See 〈undefined〉 [ONERRORGOTO], page 〈undefined〉, See 〈undefined〉 [ON-
ERRORRESUME], page 〈undefined〉 and See 〈undefined〉 [ERROR], page 〈undefined〉.

25.169 RETURN

Return from a subroutine started with See 〈undefined〉 [GOSUB], page 〈undefined〉.
For more information see the documentation of the command See 〈undefined〉 [GOSUB],
page 〈undefined〉.

25.170 REWIND [#]fn

Positions the file cursor to the start of the file. This is the same as SEEK fn,0 or SEEK
#fn,0

The argument to the statement is the file number used in the See 〈undefined〉 [OPEN],
page 〈undefined〉 statement to open the file. The character # is optional and can only be
used for compatibility reasons. Positions the file cursor to the start of the file. This is the
same as SEEK fn,0 or SEEK #fn,0

The argument to the statement is the file number used in the See 〈undefined〉 [OPEN],
page 〈undefined〉 statement to open the file. The character # is optional and can only be
used for compatibility reasons. Positions the file cursor to the start of the file. This is the
same as SEEK fn,0 or SEEK #fn,0

The argument to the statement is the file number used in the See 〈undefined〉 [OPEN],
page 〈undefined〉 statement to open the file. The character # is optional and can only be
used for compatibility reasons.

25.171 RIGHT(string,len)

Creates the right of a string. The first argument is the string. The second argument is
the number of characters that should be put into the result. If this value is larger than the
number of characters in the string then all the string is returned.

See also See 〈undefined〉 [MID], page 〈undefined〉, See 〈undefined〉 [LEFT], page 〈unde-
fined〉.

25.171.1 RIGHT Details

RIGHT(x,y) cuts out a substring of y characters from the right of the string x. If the first
argument is not defined the result is also undef. Otherwise the first argument is converted
to string and the second argument is converted to integer value.

If the second argument is not defined or has negative value it is treated as numeric zero
and as such the result string will be empty string.

For compatibility reasons you can append a dollar ($) sign to the end of the function
identifier.

204 ScriptBasic Users Guide

25.172 RND

Returns a random number as generated by the C function rand(). Note that this random
number generator usually provided by the libraries implemented for the C compiler or the
operating system is not the best quality ones. If you need really good random number
generator then you have to use some other libraries that implement reliable RND functions.

25.173 ROUND

This function rounds its argument. The first argument is the number to round, and the
optional second argument specifies the number of fractional digits to round to.

The function rounds to integer value if the second argument is missing.
The return value is long if the number of decimal places to keep is zero, otherwise the

return value is double.
Negative value for the number of decimal places results rounding to integer value.
ROUND(undef) is undef or raises an error if the option RaiseMatherror is set in bit

sbMathErrUndef.
Also ROUND(val,undef) is equivalent to ROUND(value).
See also See 〈undefined〉 [INT], page 〈undefined〉, See 〈undefined〉 [FRAC], page 〈unde-

fined〉 and See 〈undefined〉 [FIX], page 〈undefined〉

25.174 RTRIM()

Remove the space from the right of the string.

25.175 SEC

This function accepts one argument that should express the time in number of seconds
since January 1, 1970 0:00 am and returns the seconds value of that time. If the argument
is missing the function uses the actual local time.

25.176 SECANT

This is a planned function to calculate the secant of the argument.

25.177 SEEK fn,position

Go to a specified position in an open file. You can use this command to position the
file pointer to a specific position. The next read or write operation performed on the file
will be performed on that very position that was set using the command SEEK. The first
argument is the file number that was used in the statement OPEN to open the file. The
second argument is the position where the file pointer is to be set.

Chapter 25: Command reference 205

The position is counted from the start of the file counting records. The actual file pointer
will be set after> the record position. This means that if for example you want to set
the file pointer To the start of the file then you have to SEEK fn,0. This will set the File
pointer before the first record.

If there was no record length specified when the file was opened the counting takes bytes.
There is no special "record" structure of a file as it is usually under UNIX or Windows NT.
The record is merely the number of bytes treated as a single unit specified during file
opening. Go to a specified position in an open file. You can use this command to position
the file pointer to a specific position. The next read or write operation performed on the
file will be performed on that very position that was set using the command SEEK. The
first argument is the file number that was used in the statement OPEN to open the file. The
second argument is the position where the file pointer is to be set.

The position is counted from the start of the file counting records. The actual file pointer
will be set after> the record position. This means that if for example you want to set
the file pointer To the start of the file then you have to SEEK fn,0. This will set the File
pointer before the first record.

If there was no record length specified when the file was opened the counting takes bytes.
There is no special "record" structure of a file as it is usually under UNIX or Windows NT.
The record is merely the number of bytes treated as a single unit specified during file
opening. Go to a specified position in an open file. You can use this command to position
the file pointer to a specific position. The next read or write operation performed on the
file will be performed on that very position that was set using the command SEEK. The
first argument is the file number that was used in the statement OPEN to open the file. The
second argument is the position where the file pointer is to be set.

The position is counted from the start of the file counting records. The actual file pointer
will be set after> the record position. This means that if for example you want to set
the file pointer To the start of the file then you have to SEEK fn,0. This will set the File
pointer before the first record.

If there was no record length specified when the file was opened the counting takes bytes.
There is no special "record" structure of a file as it is usually under UNIX or Windows NT.
The record is merely the number of bytes treated as a single unit specified during file
opening.

25.178 SET FILE filename parameter=value

Set some of the parameters of a file. The parameter can be:
owner set the owner of the file. This operation requires root permission on UNIX or
Administrator privileges on Windows NT. The value should be the string representa-
tion of the UNIX user or the Windows NT domain user.
createtime

modifytime

accesstime

Set the time of the file. The value should be the file time in seconds since January
1,1970. 00:00GMT.

206 ScriptBasic Users Guide

If the command can not be executed an error is raised. Note that setting the file owner
also depends on the file system. For example FAT file system does not store the owner of
a file and thus can not be set.

Also setting the file time on some file system may be unsuccessful for values that are
successful under other file systems. This is because different file systems store the file times
using different possible start and end dates and resolution. For example you can set a file
to hold the creation time to be January 1, 1970 0:00 under NTFS, but not under FAT.

The different file systems store the file times with different precision. Thus the actual
time set will be the closest time not later than the specified in the command argument. For
this reason the values returned by the functions File***Time may not be the same that
was specified in the SET FILE command argument.

Set some of the parameters of a file. The parameter can be:
owner set the owner of the file. This operation requires root permission on UNIX or
Administrator privileges on Windows NT. The value should be the string representa-
tion of the UNIX user or the Windows NT domain user.
createtime

modifytime

accesstime

Set the time of the file. The value should be the file time in seconds since January
1,1970. 00:00GMT.

If the command can not be executed an error is raised. Note that setting the file owner
also depends on the file system. For example FAT file system does not store the owner of
a file and thus can not be set.

Also setting the file time on some file system may be unsuccessful for values that are
successful under other file systems. This is because different file systems store the file times
using different possible start and end dates and resolution. For example you can set a file
to hold the creation time to be January 1, 1970 0:00 under NTFS, but not under FAT.

The different file systems store the file times with different precision. Thus the actual
time set will be the closest time not later than the specified in the command argument. For
this reason the values returned by the functions File***Time may not be the same that
was specified in the SET FILE command argument.

Set some of the parameters of a file. The parameter can be:
owner set the owner of the file. This operation requires root permission on UNIX or
Administrator privileges on Windows NT. The value should be the string representa-
tion of the UNIX user or the Windows NT domain user.
createtime

modifytime

accesstime

Set the time of the file. The value should be the file time in seconds since January
1,1970. 00:00GMT.

If the command can not be executed an error is raised. Note that setting the file owner
also depends on the file system. For example FAT file system does not store the owner of
a file and thus can not be set.

Chapter 25: Command reference 207

Also setting the file time on some file system may be unsuccessful for values that are
successful under other file systems. This is because different file systems store the file times
using different possible start and end dates and resolution. For example you can set a file
to hold the creation time to be January 1, 1970 0:00 under NTFS, but not under FAT.

The different file systems store the file times with different precision. Thus the actual
time set will be the closest time not later than the specified in the command argument. For
this reason the values returned by the functions File***Time may not be the same that
was specified in the SET FILE command argument.

25.179 SET JOKER "c" TO "abcdefgh..."

Set a joker character to match certain characters when using the See 〈undefined〉 [LIKE],
page 〈undefined〉 operator. The joker character "c" can be one of the following characters

* # $? & % ! + / | < >

The string after the keyword TO should contain all the characters that the joker character
should match. To have the character to match only itself to be a normal character say

SET NO JOKER "c"

See also See 〈undefined〉 [SETWILD], page 〈undefined〉, See 〈undefined〉 [LIKE],
page 〈undefined〉 (details), See 〈undefined〉 [JOKER], page 〈undefined〉

25.180 SET WILD "c" TO "abcdefgh..."

Set a wild character to match certain characters when using the See 〈undefined〉 [LIKE],
page 〈undefined〉 operator. The wild character "c" can be one of the following characters

* # $? & % ! + / | < >

The string after the keyword TO should contain all the characters that the wild card
character should match. To have the character to match only itself to be a normal character
say

SET NO WILD "c"

See also See 〈undefined〉 [SETJOKER], page 〈undefined〉, See 〈undefined〉 [LIKE],
page 〈undefined〉 (details), See 〈undefined〉 [JOKER], page 〈undefined〉

25.181 SIN

Calculates the sine of the argument. If the result is within the range of an integer value
on the actual architecture then the result is returned as an integer, otherwise it is returned
as a real value.

SIN(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

208 ScriptBasic Users Guide

25.182 SLEEP(n)

Suspend the execution of the interpreter (process or thread) for n seconds.

Whenever the program has to wait for a few seconds it is a good idea to call this function.
Older BASIC programs originally designed for old personal computers like Atari, Amiga,
ZX Spectrum intend to use empty loop to wait time to elapse. On modern computers this
is a bad idea and should not be done.

If you execute an empty loop to wait you consume CPU. Because the program does
not access any resource to wait for it actually consumes all the CPU time slots that are
available. This means that the computer slows down, does not respond to user actions
timely.

Different computers run with different speed and an empty loop consuming 20sec on one
machine may run 2 minutes on the other or just 10 millisec. You can not reliably tell how
much time there will be during the empty loop runs.

When you call SLEEP(n) the operating system is called telling it that the code does not
need the CPU for n seconds. During this time the program is suspended and the operating
system executes other programs as needed. The code is guaranteed to return from the
function SLEEP not sooner than n seconds, but usually it does return before the second n+1
starts.

Suspend the execution of the interpreter (process or thread) for n seconds.

Whenever the program has to wait for a few seconds it is a good idea to execute this
command. Older BASIC programs originally designed for old personal computers like Atari,
Amiga, ZX Spectrum intend to use empty loop to wait time to elapse. On modern computers
this is a bad idea and should not be done.

If you execute an empty loop to wait you consume CPU. Because the program does
not access any resource to wait for it actually consumes all the CPU time slots that are
available. This means that the computer slows down, does not respond to user actions
timely.

Different computers run with different speed and an empty loop consuming 20sec on one
machine may run 2 minutes on the other or just 10 millisec. You can not reliably tell how
much time there will be during the empty loop runs.

When you execute SLEEP n the operating system is called telling it that the code does not
need the CPU for n seconds. During this time the program is suspended and the operating
system executes other programs as needed. The code is guaranteed to return from the
function SLEEP not sooner than n seconds, but usually it does return before the second n+1
starts.

Suspend the execution of the interpreter (process or thread) for n seconds.

Whenever the program has to wait for a few seconds it is a good idea to call this function.
Older BASIC programs originally designed for old personal computers like Atari, Amiga,
ZX Spectrum intend to use empty loop to wait time to elapse. On modern computers this
is a bad idea and should not be done.

If you execute an empty loop to wait you consume CPU. Because the program does
not access any resource to wait for it actually consumes all the CPU time slots that are

Chapter 25: Command reference 209

available. This means that the computer slows down, does not respond to user actions
timely.

Different computers run with different speed and an empty loop consuming 20sec on one
machine may run 2 minutes on the other or just 10 millisec. You can not reliably tell how
much time there will be during the empty loop runs.

When you call SLEEP(n) the operating system is called telling it that the code does not
need the CPU for n seconds. During this time the program is suspended and the operating
system executes other programs as needed. The code is guaranteed to return from the
function SLEEP not sooner than n seconds, but usually it does return before the second n+1
starts.

25.183 SPACE(n)

Return a string of length n containing spaces.

25.184 SPLIT string BY string TO
var 1,var 2,var 3,...,var n

Takes the string and splits into the variables using the second string as delimiter.

25.185 SPLITA string BY string TO array

Split a string into an array using the second string as delimiter. If the string has zero
length the array becomes undefined. When the delimiter is zero length string each array
element will contain a single character of the string.

See also See 〈undefined〉 [SPLIT], page 〈undefined〉

25.186 SPLITAQ string BY string QUOTE string TO array

Split a string into an array using the second string as delimiter. The delimited fields
may optionally be quoted with the third string. If the string to be split has zero length the
array becomes undefined. When the delimiter is a zero length string each array element
will contain a single character of the string.

Leading and trailing delimiters are accepted and return an empty element in the array.
For example :-

SPLITAQ ",’A,B’,C," BY "," QUOTE "’" TO Result

will generate
Result[0] = ""
Result[1] = "A,B"
Result[2] = "C"
Result[3] = ""

Note that this kind of handling of trailing and leading empty elements is different from
the handling of the same by the command See 〈undefined〉 [SPLIT], page 〈undefined〉 and

210 ScriptBasic Users Guide

See 〈undefined〉 [SPLITA], page 〈undefined〉 which do ignore those empty elements. This
command is useful to handle lines exported as CSV from Excel or similar application.

The QUOTE string is really a string and need not be a single character. If there is an
unmatched quote string in the string to be split then the rest of the string until its end is
considered quoted.

If there is an unmatched
See also See 〈undefined〉 [SPLITA], page 〈undefined〉
This command was suggested and implemented by Andrew Kingwell

(Andrew.Kingwell@idstelecom.co.uk)

25.187 SQR

Calculates the square root of the argument.
If the result is within the range of an integer value on the actual architecture then the

result is returned as an integer, otherwise it is returned as a real value.
SQR(undef) is undef or raises an error if the option RaiseMatherror is set in bit

sbMathErrUndef.
If the argument is a negative number the result of the function is undef or the function

raises error if the option RaiseMathError has the bit sbMathErrDiv set.
If the square root of the argument is an integer number then the function returns an

integer number. In other cases the returned value is real even if the argument itself is
integer.

Note that this function has the opposite meaning in the language PASCAL, namely the
square of the number. This may cause some problem if you are experienced in PASCAL
programming. In that language SQRT notes the square root> of a number.

25.188 STOP

This command stops program execution. There is no possibility to restart program
execution after this command was executed.

See also See 〈undefined〉 [END], page 〈undefined〉.

25.189 STR(n)

Converts a number to string. This function is rarely needed, because conversion is done
automatically.

25.189.1 STR Details

Converts a number to string. This function is rarely needed, because conversion is done
automatically. However you may need

STRING(13,STR(a))

to be sure that the value a is interpreted as string value.

Chapter 25: Command reference 211

25.190 STRING(n,code)

Create a string of length n containing characters code. If code is a string then the first
character of the string is used to fill the result. Otherwise code is converted to long and
the ASCII code is used.

25.191 STRREVERSE(string)

Return the reversed string (aka. all the characters in the string in reverse order).

25.192 SUB fun()

This command should be used to define a subroutine. A subroutine is a piece of code that
can be called by the BASIC program from the main part or from a function or subroutine.

SUB sub(a,b,c)
...
END SUB

The end of the subroutine is defined by the line containing the keywords END SUB.
Note that functions and subroutines are not really different in ScriptBasic. ScriptBasic

allows you to return a value from a subroutine and to call a function using the command
CALL. It is just a convention to have separately SUB and FUNCTION declarations.

For detailed information please read the documentation of the command See 〈undefined〉
[FUNCTION], page 〈undefined〉

25.193 swap a,b

Planned command.
This command swaps two variables.

25.194 SYSTEM(executable program)

This function should be used to start an external program in a separate process in
asynchronous mode. In other words you can start a process and let it run by itself and not
wait for the process to finish. After starting the new process the BASIC program goes on
parallel with the started external program.

The return value of the function is the PID of the newly created process.
This function should be used to start an external program in a separate process in

asynchronous mode. In other words you can start a process and let it run by itself and not
wait for the process to finish. After starting the new process the BASIC program goes on
parallel with the started external program.

The return value of the function is the PID of the newly created process.
If the program specified by the argument can not be started then the return value is

zero. Under UNIX the program may return a valid PID even in this case. This is because

212 ScriptBasic Users Guide

UNIX first makes a copy of the process that wants to start another and then replaces the
new process image with the program image to be started. In this case the new process is
created and the command SYSTEM has no information on the fact that the new process was
not able to replace the executable image of itself. In this case, however, the child process
has a very short life.

This function should be used to start an external program in a separate process in
asynchronous mode. In other words you can start a process and let it run by itself and not
wait for the process to finish. After starting the new process the BASIC program goes on
parallel with the started external program.

The return value of the function is the PID of the newly created process.

25.195 TAN

This is a planned function to calculate the tangent of the argument.

25.196 TAN2

This is a planned function to calculate the tangent of the ratio of the two arguments.

25.197 TEXTMODE [# fn] | input | output

Set an opened file handling to text mode.
The argument is either a file number with which the file was opened or one of keywords

input and output. In the latter case the standard input or output is set.
See also See 〈undefined〉 [BINMODE], page 〈undefined〉 Set an opened file handling to

text mode.
The argument is either a file number with which the file was opened or one of keywords

input and output. In the latter case the standard input or output is set.
See also See 〈undefined〉 [BINMODE], page 〈undefined〉 Set an opened file handling to

text mode.
The argument is either a file number with which the file was opened or one of keywords

input and output. In the latter case the standard input or output is set.
See also See 〈undefined〉 [BINMODE], page 〈undefined〉

25.198 TIMEVALUE

This function gets zero or more, at most six arguments and interprets them as year,
month, day, hour, minute and seconds and calculates the number of seconds elapsed since
January 1, 1970 till the time specified. If some arguments are missing or undef the default
values are the following:

year = 1970
month = January

Chapter 25: Command reference 213

day = 1st
hours = 0
minutes = 0
seconds = 0

25.199 TRIM()

Remove the space from both ends of the string.

25.200 TRUE

This built-in constant is implemented as an argument less function. Returns the value
true.

25.201 TRUNCATE fn,new length

Truncate an opened file to the specified size. The first argument Has to be the file
number used in the See 〈undefined〉 [OPEN], page 〈undefined〉 statement opening the file.
The second argument is the number of records to be in the file after it is truncated.

The size of a record has to be specified when the file is opened. If the size Of a record
is not specified in number of bytes then the command TRUNCATE Does truncate the file to
the number of specified bytes instead of records. (In other words the record length is one
byte.)

When the file is actually shorter than the length specified by the command argument
the command TRUNCATE automatically extends the file padding with bytes containing the
value 0.

Truncate an opened file to the specified size. The first argument Has to be the file
number used in the See 〈undefined〉 [OPEN], page 〈undefined〉 statement opening the file.
The second argument is the number of records to be in the file after it is truncated.

The size of a record has to be specified when the file is opened. If the size Of a record
is not specified in number of bytes then the command TRUNCATE Does truncate the file to
the number of specified bytes instead of records. (In other words the record length is one
byte.)

When the file is actually shorter than the length specified by the command argument
the command TRUNCATE automatically extends the file padding with bytes containing the
value 0.

Truncate an opened file to the specified size. The first argument Has to be the file
number used in the See 〈undefined〉 [OPEN], page 〈undefined〉 statement opening the file.
The second argument is the number of records to be in the file after it is truncated.

The size of a record has to be specified when the file is opened. If the size Of a record
is not specified in number of bytes then the command TRUNCATE Does truncate the file to
the number of specified bytes instead of records. (In other words the record length is one
byte.)

214 ScriptBasic Users Guide

When the file is actually shorter than the length specified by the command argument
the command TRUNCATE automatically extends the file padding with bytes containing the
value 0.

25.202 TYPE

This function can be used to determine the type of an expression. The function returns
a numeric value that describes the type of the argument. Although the numeric values
are guaranteed to be the one defined here it is recommended that you use the predefined
symbolic constant values to compare the return value of the function against. The function
return value is the following

SbTypeUndef 0 if the argument is undef.
SbTypeString 1 if the argument is string.
SbTypeReal 2 if the argument is real.
SbTypeInteger 3 if the argument is integer.
SbTypeArray 4 if the argument is an array.

See also See 〈undefined〉 [ISARRAY], page 〈undefined〉, See 〈undefined〉 [ISSTRING],
page 〈undefined〉, See 〈undefined〉 [ISINTEGER], page 〈undefined〉, See 〈undefined〉 [IS-
REAL], page 〈undefined〉, See 〈undefined〉 [ISNUMERIC], page 〈undefined〉, See 〈unde-
fined〉 [ISDEFINED], page 〈undefined〉, See 〈undefined〉 [ISUNDEF], page 〈undefined〉, See
〈undefined〉 [ISEMPTY], page 〈undefined〉.

25.203 UBOUND

This function can be used to determine the highest occupied index of an array. Note
that arrays are increased in addressable indices automatically, thus it is not an error to use
a higher index that the value returned by the function UBOUND. On the other hand all the
element having index larger than the returned value are undef.

The argument of this function has to be an array. If the argument is an ordinary value,
or a variable that is not an array the value returned by the function will be undef.

UBOUND(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

See also See 〈undefined〉 [LBOUND], page 〈undefined〉.

25.204 UCASE()

Uppercase a string.

25.205 UNDEF variable

Sets the value of a variable (or some other ScriptBasic left value) to be undefined. This
command can also be used to release the memory that was occupied by an array when the
variable holding the array is set to undef.

Chapter 25: Command reference 215

When this command is used as a function (with or without, but usually without paren-
theses), it simply returns the value undef.

25.205.1 UNDEF Details

Note that when this command is called in a function then the local variable is undefined
and the caller variable passed by reference is not changed. Therefore

sub xx(a)
undef a
end sub

q = 1
xx q
print q

will print 1 and not undef.

On the other hand

sub xx(a)
a = undef
end sub

q = 1
xx q
print q

does print undef.

25.206 UNPACK string BY format TO v1,v2,...,vn

Unpack the binary string string using the format string into the variables. The format
string should have the same format as the format string the in the function See 〈undefined〉
[PACK], page 〈undefined〉.

25.207 VAL

Converts a string to numeric value. If the string is integer it returns an integer value.
If the string contains a number presentation which is a float number the returned value is
real. In case the argument is already numeric no conversion is done.

VAL(undef) is undef or raises an error if the option RaiseMatherror is set in bit
sbMathErrUndef.

216 ScriptBasic Users Guide

25.208 WAITPID(PID,ExitCode)

This function should be used to test for the existence of a process.
The return value of the function is 0 if the process is still running. If the process has

exited (or failed in some way) the return value is 1 and the exit code of the process is stored
in ExitCode.

25.209 WEEKDAY

This function accepts one argument that should express the time in number of seconds
since January 1, 1970 0:00 am and returns the week day value of that time. If the argument
is missing the function uses the actual local time. In other words it returns what day it is
at the moment.

25.210 WHILE condition

Implements the ’while’ loop as it is usually done in most basic implementations. The
loop starts with the command while and finished with the line containing the keyword
wend. The keyword while is followed by an expression and the loop is executes so long as
long the expression is evaluated true.

while expression
...
commands to repeat
...

wend

The expression is evaluated when the looping starts and each time the loop is restarted.
It means that the code between the while and wend lines may be skipped totally if the
expression evaluates to some false value during the first evaluation before the execution
starts the loop.

In case some condition makes it necessary to exit the loop from its middle then the
command See 〈undefined〉 [GOTO], page 〈undefined〉 can be used.

ScriptBasic implements several looping constructs to be compatible with different BASIC
language dialects. Some constructs are even totally interchangeable to let programmers
with different BASIC experience use the one that fit they the best. See also See 〈un-
defined〉 [WHILE], page 〈undefined〉, See 〈undefined〉 [DOUNTIL], page 〈undefined〉, See
〈undefined〉 [DOWHILE], page 〈undefined〉, See 〈undefined〉 [REPEAT], page 〈undefined〉,
See 〈undefined〉 [DO], page 〈undefined〉 and See 〈undefined〉 [FOR], page 〈undefined〉.

25.211 YEAR

This function accepts one argument that should express the time in number of seconds
since January 1, 1970 0:00 am and returns the year value of that time. If the argument is
missing it uses the actual local time to calculate the year value. In other words it returns
the actual year.

Chapter 25: Command reference 217

25.212 YEARDAY

This function accepts one argument that should express the time in number of seconds
since January 1, 1970 0:00 am and returns the year-day value of that time. This is actually
the number of the day inside the year so that January 1st is #1 and December 31 is #365
(or 366 in leap years). If the argument is missing the function uses the actual local time.

218 ScriptBasic Users Guide

