
ScriptBasic Source Files

Peter Verhas





i

Short Contents

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1



ii ScriptBasic Source Files



iii

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 scriba.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 scriba new() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 scriba destroy() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 scriba NewSbData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.4 scriba InitSbData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.5 scriba UndefSbData() . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.6 scriba NewSbLong() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.7 scriba NewSbDouble() . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.8 scriba NewSbUndef() . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.9 scriba NewSbString() . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.10 scriba NewSbBytes() . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.11 scriba DestroySbData() . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.12 scriba PurgeReaderMemory(). . . . . . . . . . . . . . . . . . . 5
1.1.13 scriba PurgeLexerMemory() . . . . . . . . . . . . . . . . . . . . 5
1.1.14 scriba PurgeSyntaxerMemory() . . . . . . . . . . . . . . . . . 5
1.1.15 scriba PurgeBuilderMemory() . . . . . . . . . . . . . . . . . . 5
1.1.16 scriba PurgePreprocessorMemory() . . . . . . . . . . . . . 5
1.1.17 scriba PurgeExecuteMemory() . . . . . . . . . . . . . . . . . . 5
1.1.18 scriba SetFileName() . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.19 scriba GettingConfiguration() . . . . . . . . . . . . . . . . . . 6
1.1.20 scriba LoadConfiguration() . . . . . . . . . . . . . . . . . . . . . 6
1.1.21 scriba GetConfigFileName() . . . . . . . . . . . . . . . . . . . . 6
1.1.22 scriba InheritConfiguration() . . . . . . . . . . . . . . . . . . . 7
1.1.23 scriba InitModuleInterface() . . . . . . . . . . . . . . . . . . . . 7
1.1.24 scriba InheritModuleInterface() . . . . . . . . . . . . . . . . . 8
1.1.25 scriba InheritExecuteObject() . . . . . . . . . . . . . . . . . . 8
1.1.26 scriba SetProcessSbObject() . . . . . . . . . . . . . . . . . . . . 8
1.1.27 scriba ShutdownMtModules() . . . . . . . . . . . . . . . . . . 9
1.1.28 scriba SetCgiFlag() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.29 scriba SetReportFunction() . . . . . . . . . . . . . . . . . . . . . 9
1.1.30 scriba SetReportPointer() . . . . . . . . . . . . . . . . . . . . . . 9
1.1.31 scriba SetStdin() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.32 scriba SetStdout() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.33 scriba SetEmbedPointer() . . . . . . . . . . . . . . . . . . . . . 10
1.1.34 scriba SetEnvironment() . . . . . . . . . . . . . . . . . . . . . . 11
1.1.35 scriba LoadBinaryProgramWithOffset() . . . . . . . . 11
1.1.36 scriba LoadBinaryProgram() . . . . . . . . . . . . . . . . . . 11
1.1.37 scriba InheritBinaryProgram() . . . . . . . . . . . . . . . . 12
1.1.38 scriba LoadInternalPreprocessor() . . . . . . . . . . . . . 12
1.1.39 scriba ReadSource() . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.40 scriba DoLexicalAnalysis() . . . . . . . . . . . . . . . . . . . . 13
1.1.41 scriba DoSyntaxAnalysis() . . . . . . . . . . . . . . . . . . . . 13



iv ScriptBasic Source Files

1.1.42 scriba BuildCode() . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.43 scriba IsFileBinaryFormat() . . . . . . . . . . . . . . . . . . . 14
1.1.44 scriba GetCacheFileName() . . . . . . . . . . . . . . . . . . . 14
1.1.45 scriba UseCacheFile() . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.46 scriba SaveCacheFile() . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.47 scriba RunExternalPreprocessor() . . . . . . . . . . . . . 15
1.1.48 scriba SaveCode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.49 scriba SaveCCode() . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.50 scriba SaveECode() . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.51 scriba LoadSourceProgram() . . . . . . . . . . . . . . . . . . 16
1.1.52 scriba LoadProgramString() . . . . . . . . . . . . . . . . . . . 16
1.1.53 scriba Run() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.54 scriba NoRun() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.55 scriba ResetVariables() . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.56 scriba Call() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.57 scriba CallArg() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.58 scriba DestroySbArgs() . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.59 scriba NewSbArgs() . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.60 scriba CallArgEx() . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1.61 scriba LookupFunctionByName() . . . . . . . . . . . . . . 21
1.1.62 scriba LookupVariableByName() . . . . . . . . . . . . . . 21
1.1.63 scriba GetVariableType() . . . . . . . . . . . . . . . . . . . . . 22
1.1.64 scriba GetVariable() . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.65 scriba SetVariable() . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.66 scriba InitStaticModules(). . . . . . . . . . . . . . . . . . . . . 23
1.1.67 scriba FinishStaticModules() . . . . . . . . . . . . . . . . . . 24

1.2 basext.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.1 basext GetArgsF() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 memory.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 memory InitStructure() . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 memory RegisterType() . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.3 memory RegisterTypes() . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.4 memory DebugDump() . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.5 memory NewVariable() . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.6 memory ReleaseVariable(). . . . . . . . . . . . . . . . . . . . . . 27
1.3.7 memory NewString() . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.8 memory NewCString() . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.9 memory SetRef() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.10 memory NewRef() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.11 memory IsUndef() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.12 memory Type() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.13 memory SelfOrRealUndef() . . . . . . . . . . . . . . . . . . . 28
1.3.14 memory NewUndef() . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.15 memory ReplaceVariable() . . . . . . . . . . . . . . . . . . . . 28
1.3.16 memory NewLong() . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.17 memory NewDouble() . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.18 memory CopyArray . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.19 memory NewArray() . . . . . . . . . . . . . . . . . . . . . . . . . . 29



v

1.3.20 memory ReDimArray() . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.21 memory CheckArrayIndex() . . . . . . . . . . . . . . . . . . . 29
1.3.22 memory Mortalize() . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.23 memory Immortalize() . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.24 memory NewMortal() . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.25 memory DupImmortal() . . . . . . . . . . . . . . . . . . . . . . 30
1.3.26 memory DupVar() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.27 memory DupMortalize() . . . . . . . . . . . . . . . . . . . . . . 31
1.3.28 memory ReleaseMortals() . . . . . . . . . . . . . . . . . . . . . 31
1.3.29 memory DebugDumpVariable() . . . . . . . . . . . . . . . . 31
1.3.30 memory DebugDumpMortals() . . . . . . . . . . . . . . . . 32
1.3.31 memory NewMortalString() . . . . . . . . . . . . . . . . . . . 32
1.3.32 memory NewMortalCString() . . . . . . . . . . . . . . . . . 32
1.3.33 memory NewMortalLong() . . . . . . . . . . . . . . . . . . . . 32
1.3.34 memory NewMortalRef() . . . . . . . . . . . . . . . . . . . . . 32
1.3.35 memory NewMortalDouble() . . . . . . . . . . . . . . . . . . 33
1.3.36 memory NewMortalArray() . . . . . . . . . . . . . . . . . . . 33

1.4 epreproc.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.1 External preprocessor handling . . . . . . . . . . . . . . . . . 33
1.4.2 Execute external preprocessors. . . . . . . . . . . . . . . . . . 33

1.5 ipreproc.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.5.1 Internal preprocessor handling . . . . . . . . . . . . . . . . . . 34
1.5.2 Initialize the preprocessor structure . . . . . . . . . . . . . 34
1.5.3 Release all memories allocated by preprocessors . . 34
1.5.4 Insert a new preprocessor into the preprocessor list

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.5.5 Delete a preprocessor from the list of preprocessors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.5.6 Load an internal preprocessor. . . . . . . . . . . . . . . . . . . 35
1.5.7 Process preprocessor requests . . . . . . . . . . . . . . . . . . . 36
1.5.8 Preprocessor function . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6 command.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.6.1 Header file for command building . . . . . . . . . . . . . . . 37
1.6.2 Start a command implementation . . . . . . . . . . . . . . . 37
1.6.3 Finish a command implementation . . . . . . . . . . . . . . 38
1.6.4 Implement a command that has identical

functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.6.5 Use the mortals of the caller . . . . . . . . . . . . . . . . . . . . 39
1.6.6 Return from the function . . . . . . . . . . . . . . . . . . . . . . . 39
1.6.7 Terminate a function with error . . . . . . . . . . . . . . . . . 39
1.6.8 The value of the programcounter . . . . . . . . . . . . . . . . 39
1.6.9 Implement jump instructions . . . . . . . . . . . . . . . . . . . 39
1.6.10 Get the next command parameter . . . . . . . . . . . . . 40
1.6.11 Access a command parameter . . . . . . . . . . . . . . . . . 40
1.6.12 Get the opcode of a node. . . . . . . . . . . . . . . . . . . . . . 40
1.6.13 Get the parameter list node for a function . . . . . . 41
1.6.14 Get the car node of a list node. . . . . . . . . . . . . . . . . 41
1.6.15 Get the cdr node of a list node . . . . . . . . . . . . . . . . 41



vi ScriptBasic Source Files

1.6.16 Special variable to store the result . . . . . . . . . . . . . 41
1.6.17 Access certain values of a memory object . . . . . . . 42
1.6.18 Create a new mortal value. . . . . . . . . . . . . . . . . . . . . 42
1.6.19 Evaluate an expression . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.20 Evaluate a left value . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.6.21 Immortalize a variable . . . . . . . . . . . . . . . . . . . . . . . . 43
1.6.22 Create a new immortal value . . . . . . . . . . . . . . . . . . 43
1.6.23 Convert a value to other type . . . . . . . . . . . . . . . . . . 43
1.6.24 Parameter pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.6.25 Allocate memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.6.26 Release memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.6.27 Decide if a string is integer or not . . . . . . . . . . . . . . 45
1.6.28 Basic C variable types to be used . . . . . . . . . . . . . . 45
1.6.29 Get the actual type of a value . . . . . . . . . . . . . . . . . 45

1.7 lexer.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.7.1 lex SymbolicName() . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.7.2 lex HandleContinuationLines() . . . . . . . . . . . . . . . . . 46
1.7.3 lex RemoveSkipSymbols() . . . . . . . . . . . . . . . . . . . . . . 46
1.7.4 lex RemoveComments() . . . . . . . . . . . . . . . . . . . . . . . . 47
1.7.5 lex NextLexeme() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.7.6 lex SavePosition() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.7.7 lex RestorePosition() . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.7.8 lex StartIteration() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.7.9 lex EOF() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.7.10 lex Type() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.7.11 lex Double() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.7.12 lex String() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.7.13 lex StrLen(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.7.14 lex Long() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.7.15 lex LineNumber() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.7.16 lex FileName() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.7.17 lex XXX() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.7.18 lex Finish() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.7.19 lex DumpLexemes() . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.7.20 lex ReadInput() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.7.21 lex InitStructure() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.8 expression.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.8.1 What is an expression in ScriptBasic . . . . . . . . . . . . 50
1.8.2 ex DumpVariables() . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.8.3 expression PushNameSpace() . . . . . . . . . . . . . . . . . . . 52
1.8.4 ex CheckUndefinedLabels() . . . . . . . . . . . . . . . . . . . . 52
1.8.5 ex CleanNameSpaceStack() . . . . . . . . . . . . . . . . . . . . 52
1.8.6 expression PopNameSpace() . . . . . . . . . . . . . . . . . . . . 52
1.8.7 ex PushWaitingLabel() . . . . . . . . . . . . . . . . . . . . . . . . 53
1.8.8 ex PopWaitingLabel() . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.8.9 ex PushLabel() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.8.10 ex PopLabel() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.8.11 ex CleanLabelStack() . . . . . . . . . . . . . . . . . . . . . . . . 54



vii

1.8.12 Some NOTE on SymbolXXX functions . . . . . . . . . 55
1.8.13 new SymbolLABEL() . . . . . . . . . . . . . . . . . . . . . . . . 55
1.8.14 new SymbolVAR(). . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.8.15 new SymbolUF() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.8.16 new eNODE() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.8.17 new eNODE l() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.8.18 ex free() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8.19 ex init() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8.20 ex CleanNamePath() . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8.21 ex ConvertName() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8.22 ex IsBFun() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.8.23 ex IsUnop() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.8.24 ex IsBinop() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.8.25 ex LeftValueList() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.8.26 ex ExpressionList() . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.8.27 ex Local() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.8.28 ex LocalList() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.8.29 ex Global() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.8.30 ex GlobalList() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.8.31 ex LookupUserFunction() . . . . . . . . . . . . . . . . . . . . . 60
1.8.32 ex LookupGlobalVariable . . . . . . . . . . . . . . . . . . . . . 60
1.8.33 ex LookupLocallyDeclaredGlobalVariable. . . . . . . 60
1.8.34 ex LookupLocalVariable . . . . . . . . . . . . . . . . . . . . . . 60
1.8.35 ex Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.8.36 ex Expression i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.8.37 ex Expression r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.8.38 ex IsSymbolValidLval(pEx) . . . . . . . . . . . . . . . . . . . 62
1.8.39 ex LeftValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.8.40 ex PredeclareGlobalLongConst() . . . . . . . . . . . . . . . 62
1.8.41 ex IsCommandThis . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.8.42 ex Command r() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.8.43 ex Command l() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.8.44 ex Pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1.8.45 ex IsCommandCALL(). . . . . . . . . . . . . . . . . . . . . . . . 64
1.8.46 ex IsCommandOPEN() . . . . . . . . . . . . . . . . . . . . . . . 64
1.8.47 ex IsCommandSLIF() . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.8.48 ex IsCommandIF() . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.8.49 ex IsCommandLET() . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.9 builder.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.9.1 The structure of the string table . . . . . . . . . . . . . . . . 66
1.9.2 build AllocateStringTable() . . . . . . . . . . . . . . . . . . . . 66
1.9.3 build StringIndex() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.9.4 build Build l() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.9.5 build Build r() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.9.6 build Build() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.9.7 build MagicCode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.9.8 build SaveCCode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.9.9 build SaveCorePart() . . . . . . . . . . . . . . . . . . . . . . . . . . 68



viii ScriptBasic Source Files

1.9.10 build SaveCore() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.9.11 build SaveCode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.9.12 build SaveECode() . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.9.13 build GetExeCodeOffset() . . . . . . . . . . . . . . . . . . . . . 70
1.9.14 build LoadCore() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.9.15 build LoadCodeWithOffset() . . . . . . . . . . . . . . . . . . 71
1.9.16 build LoadCode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.9.17 build IsFileBinaryFormat() . . . . . . . . . . . . . . . . . . . . 71
1.9.18 build pprint() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.9.19 build CreateFTable() . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.9.20 build CreateVTable() . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.9.21 build LookupFunctionByName() . . . . . . . . . . . . . . . 73
1.9.22 build LookupVariableByName() . . . . . . . . . . . . . . . 73

1.10 reader.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.10.1 reader IncreaseBuffer(). . . . . . . . . . . . . . . . . . . . . . . . 73
1.10.2 reader gets() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.10.3 reader ReadLines() . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.10.4 reader ReadLines r() . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.10.5 reader ProcessIncludeFiles() . . . . . . . . . . . . . . . . . . . 75
1.10.6 reader LoadPreprocessors() . . . . . . . . . . . . . . . . . . . 75
1.10.7 reader StartIteration() . . . . . . . . . . . . . . . . . . . . . . . . 75
1.10.8 reader NextLine() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.10.9 reader NextCharacter() . . . . . . . . . . . . . . . . . . . . . . . 76
1.10.10 reader FileName() . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.10.11 reader LineNumber() . . . . . . . . . . . . . . . . . . . . . . . . 76
1.10.12 reader InitStructure() . . . . . . . . . . . . . . . . . . . . . . . . 76
1.10.13 reader RelateFile() . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1.10.14 reader DumpLines() . . . . . . . . . . . . . . . . . . . . . . . . . 77

1.11 myalloc.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1.11.1 Multi-thread use of this module . . . . . . . . . . . . . . . . 77
1.11.2 alloc InitSegment() . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
1.11.3 alloc GlobalUseGlobalMutex() . . . . . . . . . . . . . . . . . 78
1.11.4 alloc SegmentLimit() . . . . . . . . . . . . . . . . . . . . . . . . . 78
1.11.5 alloc FreeSegment() . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.11.6 alloc FinishSegment() . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.11.7 alloc Alloc() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.11.8 alloc Free() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.11.9 alloc Merge() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.11.10 alloc MergeAndFinish() . . . . . . . . . . . . . . . . . . . . . . 80
1.11.11 alloc InitStat() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.11.12 alloc GlobalGetStat() . . . . . . . . . . . . . . . . . . . . . . . . 80
1.11.13 alloc GetStat() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

1.12 match.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1.12.1 match index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1.12.2 InitSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1.12.3 ModifySet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1.12.4 match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
1.12.5 count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



ix

1.12.6 parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1.12.7 size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1.13 sym.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1.13.1 sym NewSymbolTable() . . . . . . . . . . . . . . . . . . . . . . . 86
1.13.2 sym FreeSymbolTable() . . . . . . . . . . . . . . . . . . . . . . . 86
1.13.3 sym TraverseSymbolTable() . . . . . . . . . . . . . . . . . . . 87
1.13.4 sym LookupSymbol() . . . . . . . . . . . . . . . . . . . . . . . . . 87
1.13.5 sym DeleteSymbol() . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1.14 execute.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1.14.1 execute GetCommandByName() . . . . . . . . . . . . . . . 88
1.14.2 execute CopyCommandTable() . . . . . . . . . . . . . . . . 89
1.14.3 execute InitStructure(). . . . . . . . . . . . . . . . . . . . . . . . 89
1.14.4 execute ReInitStructure() . . . . . . . . . . . . . . . . . . . . . 89
1.14.5 execute Execute r() . . . . . . . . . . . . . . . . . . . . . . . . . . 89
1.14.6 execute InitExecute() . . . . . . . . . . . . . . . . . . . . . . . . . 90
1.14.7 execute FinishExecute() . . . . . . . . . . . . . . . . . . . . . . 90
1.14.8 execute Execute() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
1.14.9 execute ExecuteFunction() . . . . . . . . . . . . . . . . . . . . 90
1.14.10 execute Evaluate() . . . . . . . . . . . . . . . . . . . . . . . . . . 91
1.14.11 execute LeftValue() . . . . . . . . . . . . . . . . . . . . . . . . . . 91
1.14.12 execute EvaluateArray() . . . . . . . . . . . . . . . . . . . . . 92
1.14.13 execute EvaluateSarray() . . . . . . . . . . . . . . . . . . . . 92
1.14.14 execute LeftValueArray() . . . . . . . . . . . . . . . . . . . . 93
1.14.15 execute LeftValueSarray() . . . . . . . . . . . . . . . . . . . . 93
1.14.16 execute Convert2String() . . . . . . . . . . . . . . . . . . . . 93
1.14.17 execute Convert2Long() . . . . . . . . . . . . . . . . . . . . . 93
1.14.18 execute Convert2LongS() . . . . . . . . . . . . . . . . . . . . 94
1.14.19 execute Convert2Double() . . . . . . . . . . . . . . . . . . . . 94
1.14.20 execute Convert2DoubleS() . . . . . . . . . . . . . . . . . . 94
1.14.21 execute Convert2Numeric() . . . . . . . . . . . . . . . . . . 95
1.14.22 execute Dereference() . . . . . . . . . . . . . . . . . . . . . . . . 95
1.14.23 execute DereferenceS() . . . . . . . . . . . . . . . . . . . . . . . 95
1.14.24 execute GetDoubleValue() . . . . . . . . . . . . . . . . . . . 96
1.14.25 execute GetLongValue() . . . . . . . . . . . . . . . . . . . . . 96
1.14.26 execute IsStringInteger() . . . . . . . . . . . . . . . . . . . . . 97
1.14.27 execute IsInteger() . . . . . . . . . . . . . . . . . . . . . . . . . . 97

1.15 dynlolib.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1.15.1 dynlolib LoadLibrary . . . . . . . . . . . . . . . . . . . . . . . . . 97
1.15.2 dynlolib FreeLibrary . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1.15.3 dynlolib GetFunctionByName . . . . . . . . . . . . . . . . . 98

1.16 conftree.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
1.16.1 cft init() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
1.16.2 cft GetConfigFileName() . . . . . . . . . . . . . . . . . . . . . . 99
1.16.3 cft start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
1.16.4 strmyeq() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
1.16.5 cft FindNode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
1.16.6 cft GetEx() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
1.16.7 cft GetString() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



x ScriptBasic Source Files

1.16.8 cft EnumFirst() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
1.16.9 cft EnumNext() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
1.16.10 cft GetKey() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
1.16.11 cft ReadConfig() . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
1.16.12 cft WriteConfig() . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
1.16.13 cft DropConfig() . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

1.17 filesys.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
1.17.1 file fopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1.17.2 file fclose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1.17.3 file size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1.17.4 file time accessed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1.17.5 file time modified . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1.17.6 file time created . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1.17.7 file isdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1.17.8 file isreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.17.9 file exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.17.10 file truncate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.17.11 file fgetc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.17.12 file ferror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.17.13 file fread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.17.14 file fwrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.17.15 file fputc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.17.16 file setmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.17.17 file binmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.17.18 file textmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.17.19 file flock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.17.20 file lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.17.21 file feof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.17.22 file mkdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.17.23 file rmdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.17.24 file remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.17.25 file deltree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.17.26 file MakeDirectory. . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.17.27 file opendir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1.17.28 file readdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1.17.29 file closedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1.17.30 file sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1.17.31 file curdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1.17.32 file chdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1.17.33 file chown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1.17.34 file getowner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1.17.35 file SetCreateTime . . . . . . . . . . . . . . . . . . . . . . . . . 109
1.17.36 file SetModifyTime . . . . . . . . . . . . . . . . . . . . . . . . . 110
1.17.37 file SetAccessTime . . . . . . . . . . . . . . . . . . . . . . . . . 110
1.17.38 file gethostname . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
1.17.39 file gethost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
1.17.40 file tcpconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
1.17.41 file tcpsend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



xi

1.17.42 file tcprecv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
1.17.43 file tcpclose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
1.17.44 file killproc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
1.17.45 file fcrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
1.17.46 file CreateProcess . . . . . . . . . . . . . . . . . . . . . . . . . . 112
1.17.47 file CreateProcessEx . . . . . . . . . . . . . . . . . . . . . . . . 112
1.17.48 file waitpid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

1.18 modumana.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
1.18.1 modu Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
1.18.2 modu Preload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
1.18.3 modu GetModuleFunctionByName . . . . . . . . . . . 114
1.18.4 modu GetStaticFunctionByName . . . . . . . . . . . . . 114
1.18.5 modu LoadModule . . . . . . . . . . . . . . . . . . . . . . . . . . 114
1.18.6 modu GetFunctionByName . . . . . . . . . . . . . . . . . . 115
1.18.7 modu UnloadAllModules . . . . . . . . . . . . . . . . . . . . . 115
1.18.8 modu UnloadModule . . . . . . . . . . . . . . . . . . . . . . . . 116
1.18.9 modu ShutdownModule . . . . . . . . . . . . . . . . . . . . . . 116

1.19 hookers.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
1.19.1 hook Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
1.19.2 hook file access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
1.19.3 hook fopen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
1.19.4 hook fclose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
1.19.5 hook size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.19.6 hook time accessed . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.19.7 hook time modified . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.19.8 hook time created . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.19.9 hook isdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.19.10 hook isreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.19.11 hook fileexists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.19.12 hook truncate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.19.13 hook fgetc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
1.19.14 hook ferror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
1.19.15 hook fread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
1.19.16 hook setmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
1.19.17 hook binmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
1.19.18 hook textmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
1.19.19 hook fwrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
1.19.20 hook fputc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.19.21 hook flock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.19.22 hook lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.19.23 hook feof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.19.24 hook mkdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.19.25 hook rmdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.19.26 hook remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.19.27 hook deltree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.19.28 hook MakeDirectory . . . . . . . . . . . . . . . . . . . . . . . . 121
1.19.29 hook opendir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.19.30 hook readdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



xii ScriptBasic Source Files

1.19.31 hook closedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.19.32 hook sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.19.33 hook curdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.19.34 hook chdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
1.19.35 hook chown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
1.19.36 hook SetCreateTime . . . . . . . . . . . . . . . . . . . . . . . . 122
1.19.37 hook SetModifyTime . . . . . . . . . . . . . . . . . . . . . . . 122
1.19.38 hook SetAccessTime . . . . . . . . . . . . . . . . . . . . . . . . 122
1.19.39 hook gethostname . . . . . . . . . . . . . . . . . . . . . . . . . . 122
1.19.40 hook gethost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
1.19.41 hook tcpconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
1.19.42 hook tcpsend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
1.19.43 hook tcprecv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
1.19.44 hook tcpclose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
1.19.45 hook killproc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
1.19.46 hook getowner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
1.19.47 hook fcrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
1.19.48 hook CreateProcess . . . . . . . . . . . . . . . . . . . . . . . . 124
1.19.49 hook CreateProcessEx . . . . . . . . . . . . . . . . . . . . . . 124
1.19.50 hook waitpid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
1.19.51 hook CallScribaFunction . . . . . . . . . . . . . . . . . . . . 124

1.20 options.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
1.20.1 options Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.20.2 options Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.20.3 options Get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.20.4 options GetR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

1.21 report.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
1.21.1 report report() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

1.22 logger.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
1.22.1 log state() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
1.22.2 log init(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
1.22.3 log printf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
1.22.4 log shutdown() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

1.23 thread.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
1.23.1 thread CreateThread . . . . . . . . . . . . . . . . . . . . . . . . 129
1.23.2 thread ExitThread . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1.23.3 thread InitMutex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1.23.4 thread FinishMutex . . . . . . . . . . . . . . . . . . . . . . . . . 130
1.23.5 thread LockMutex . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1.23.6 thread UnlockMutex . . . . . . . . . . . . . . . . . . . . . . . . . 130
1.23.7 thread shlckstry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
1.23.8 thread InitLock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.23.9 thread FinishLock . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.23.10 thread LockRead . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.23.11 thread LockWrite . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.23.12 thread UnlockRead . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.23.13 thread UnlockWrite . . . . . . . . . . . . . . . . . . . . . . . . 132

1.24 hndlptr.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



xiii

1.24.1 handle GetHandle . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
1.24.2 handle GetPointer . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
1.24.3 handle FreeHandle . . . . . . . . . . . . . . . . . . . . . . . . . . 134
1.24.4 handle DestroyHandleArray . . . . . . . . . . . . . . . . . . 134

1.25 httpd.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
1.25.1 httpd module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
1.25.2 AppInit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
1.25.3 AppStart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.25.4 HttpProc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.25.5 FtpProc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



xiv ScriptBasic Source Files



Chapter 1: Introduction 1

1 Introduction

This file contains the source code documentation. Most of this information is also com-
piled into the developers guide or into other documentation.

1.1 scriba.c

1.1.1 scriba new()

To create a new SbProgram object you have to call this function. The two arguments
should point to malloc and free or similar functions. All later memory allocation and
releasing will be performed using these functions.

Note that this is the only function that does not require a pointer to an SbProgram
object.

SCRIBA_MAIN_LIBSPEC pSbProgram scriba_new(void * (*maf)(size_t),
void (*mrf)(void *)

);

1.1.2 scriba destroy()

After a ScriptBasic program was successfully execued and there is no need to run it
anymore call this function to release all memory associated with the code.

void scriba_destroy(pSbProgram pProgram
);

1.1.3 scriba NewSbData()

Allocate and return a pointer to the allocated SbData structure.

This structure can be used to store ScriptBasic variable data, long, double or string.
This function is called by other functions from this module. Usually the programmer, who
embeds ScriptBasic will rarely call this function directly. Rather he/she will use See 〈un-
defined〉 [scriba NewSbLong()], page 〈undefined〉 (as an example) that creates a variable
capable holding a long, sets the type to be SBT_LNG and stores initial value.

See also See 〈undefined〉 [scriba NewSbLong()], page 〈undefined〉, See 〈undefined〉
[scriba NewSbDouble()], page 〈undefined〉, See 〈undefined〉 [scriba NewSbUndef()],
page 〈undefined〉, See 〈undefined〉 [scriba NewSbString()], page 〈undefined〉, See 〈unde-
fined〉 [scriba NewSbBytes()], page 〈undefined〉, See 〈undefined〉 [scriba DestroySbData()],
page 〈undefined〉.

pSbData scriba_NewSbData(pSbProgram pProgram
);



2 ScriptBasic Source Files

1.1.4 scriba InitSbData()

This function initializes an SbData structure to hold undef value. This function should
be used to initialize an allocated SbData memory structure. This function internally is
called by See 〈undefined〉 [scriba NewSbData()], page 〈undefined〉.

See also See 〈undefined〉 [scriba NewSbLong()], page 〈undefined〉, See 〈undefined〉
[scriba NewSbDouble()], page 〈undefined〉, See 〈undefined〉 [scriba NewSbUndef()],
page 〈undefined〉, See 〈undefined〉 [scriba NewSbString()], page 〈undefined〉, See 〈unde-
fined〉 [scriba NewSbBytes()], page 〈undefined〉, See 〈undefined〉 [scriba DestroySbData()],
page 〈undefined〉.

void scriba_InitSbData(pSbProgram pProgram,
pSbData p

);

1.1.5 scriba UndefSbData()

This function sets an SbData structure to hold the undefined value.
This function should should not be used instead of See 〈undefined〉 [scriba InitSbData()],

page 〈undefined〉. While that function should be used to inititalize the memory structure
this function should be used to set the value of an alreasdy initialized and probably used
SbData variable to undef.

The difference inside is that if the SbData structure is a string then this function releases
the memory occupied by the string, while See 〈undefined〉 [scriba InitSbData()], page 〈un-
defined〉 does not.

See also See 〈undefined〉 [scriba NewSbLong()], page 〈undefined〉, See 〈undefined〉
[scriba NewSbDouble()], page 〈undefined〉, See 〈undefined〉 [scriba NewSbUndef()],
page 〈undefined〉, See 〈undefined〉 [scriba NewSbString()], page 〈undefined〉, See 〈unde-
fined〉 [scriba NewSbBytes()], page 〈undefined〉, See 〈undefined〉 [scriba DestroySbData()],
page 〈undefined〉.

void scriba_UndefSbData(pSbProgram pProgram,
pSbData p

);

1.1.6 scriba NewSbLong()

This function allocates and returns a pointer pointing to a structure of type SbData
holding a long value. If the allocation failed the return value is NULL. If the memory
allocation was successful the allocated structure will have the type SBT_LONG and will hold
the initial value specified by the argument lInitValue.

pSbData scriba_NewSbLong(pSbProgram pProgram,
long lInitValue

);

See also See 〈undefined〉 [scriba NewSbLong()], page 〈undefined〉, See 〈undefined〉
[scriba NewSbDouble()], page 〈undefined〉, See 〈undefined〉 [scriba NewSbUndef()],



Chapter 1: Introduction 3

page 〈undefined〉, See 〈undefined〉 [scriba NewSbString()], page 〈undefined〉, See 〈unde-
fined〉 [scriba NewSbBytes()], page 〈undefined〉, See 〈undefined〉 [scriba DestroySbData()],
page 〈undefined〉.

1.1.7 scriba NewSbDouble()

This function allocates and returns a pointer pointing to a structure of type SbData
holding a double value. If the allocation failed the return value is NULL. If the memory
allocation was successful the allocated structure will have the type SBT_DOUBLE and will
hold the initial value specified by the argument dInitValue.

pSbData scriba_NewSbDouble(pSbProgram pProgram,
double dInitValue

);

See also See 〈undefined〉 [scriba NewSbLong()], page 〈undefined〉, See 〈undefined〉
[scriba NewSbDouble()], page 〈undefined〉, See 〈undefined〉 [scriba NewSbUndef()],
page 〈undefined〉, See 〈undefined〉 [scriba NewSbString()], page 〈undefined〉, See 〈unde-
fined〉 [scriba NewSbBytes()], page 〈undefined〉, See 〈undefined〉 [scriba DestroySbData()],
page 〈undefined〉.

1.1.8 scriba NewSbUndef()

This function allocates and returns a pointer pointing to a structure of type SbData
holding an undef value. If the allocation failed the return value is NULL. If the memory
allocation was successful the allocated structure will have the type SBT_UNDEF.

pSbData scriba_NewSbUndef(pSbProgram pProgram
);

See also See 〈undefined〉 [scriba NewSbLong()], page 〈undefined〉, See 〈undefined〉
[scriba NewSbDouble()], page 〈undefined〉, See 〈undefined〉 [scriba NewSbUndef()],
page 〈undefined〉, See 〈undefined〉 [scriba NewSbString()], page 〈undefined〉, See 〈unde-
fined〉 [scriba NewSbBytes()], page 〈undefined〉, See 〈undefined〉 [scriba DestroySbData()],
page 〈undefined〉.

1.1.9 scriba NewSbString()

This function allocates and returns a pointer pointing to a structure of type SbData
holding a string value. If the allocation failed the return value is NULL. If the memory
allocation was successful the allocated structure will have the type SBT_STRING and will
hold the initial value specified by the argument pszInitValue.

pSbData scriba_NewSbString(pSbProgram pProgram,
char *pszInitValue

);

Note on ZCHAR termination:

The init value pszInitValue should be a zchar terminated string. Note that Script-
Basic internally stores the strings as series byte and the length of the string without any



4 ScriptBasic Source Files

terminating zchar. Therefore the length of the string that is stored should have been
strlen(pszInitValue). This does not contain the terminating zchar.

In reality however we allocate an extra byte that stores the zchar, but the size of the
string is one character less. Therefore ScriptBasic routines will recognize the size of the
string correct and also the caller can use the string using the macro scriba_GetString as
a zchar terminated C string. This requires an extra byte of storage for each string passed
from the embedding C application to ScriptBasic, but saves a lot of hedeache and also
memory copy when the string has to be used as a zchar terminated string.

See also See 〈undefined〉 [scriba NewSbLong()], page 〈undefined〉, See 〈undefined〉
[scriba NewSbDouble()], page 〈undefined〉, See 〈undefined〉 [scriba NewSbUndef()],
page 〈undefined〉, See 〈undefined〉 [scriba NewSbString()], page 〈undefined〉, See 〈unde-
fined〉 [scriba NewSbBytes()], page 〈undefined〉, See 〈undefined〉 [scriba DestroySbData()],
page 〈undefined〉.

1.1.10 scriba NewSbBytes()

This function allocates and returns a pointer pointing to a structure of type SbData
holding a string value. If the allocation failed the return value is NULL. If the memory
allocation was successful the allocated structure will have the type SBT_STRING and will
hold the initial value specified by the argument pszInitValue of the length len.

pSbData scriba_NewSbBytes(pSbProgram pProgram,
unsigned long len,
unsigned char *pszInitValue

);

This function allocates len+1 number of bytes data and stores the initial value pointed
by pszInitValue in it.

The extra plus one byte is an extra terminating zero char that may help the C program-
mers to handle the string in case it is not binary. Please also read the not on the terminating
ZChar in the function See 〈undefined〉 [scriba NewSbString()], page 〈undefined〉.

See also See 〈undefined〉 [scriba NewSbLong()], page 〈undefined〉, See 〈undefined〉
[scriba NewSbDouble()], page 〈undefined〉, See 〈undefined〉 [scriba NewSbUndef()],
page 〈undefined〉, See 〈undefined〉 [scriba NewSbString()], page 〈undefined〉, See 〈unde-
fined〉 [scriba NewSbBytes()], page 〈undefined〉, See 〈undefined〉 [scriba DestroySbData()],
page 〈undefined〉.

1.1.11 scriba DestroySbData()

Call this function to release the memory that was allocated by any of the NewSbXXX
functions. This function releases the memory and also cares to release the memory occupied
by the characters in case the value had the type SBT_STRING.

void scriba_DestroySbData(pSbProgram pProgram,
pSbData p

);

See also See 〈undefined〉 [scriba NewSbLong()], page 〈undefined〉, See 〈undefined〉
[scriba NewSbDouble()], page 〈undefined〉, See 〈undefined〉 [scriba NewSbUndef()],



Chapter 1: Introduction 5

page 〈undefined〉, See 〈undefined〉 [scriba NewSbString()], page 〈undefined〉, See 〈unde-
fined〉 [scriba NewSbBytes()], page 〈undefined〉, See 〈undefined〉 [scriba DestroySbData()],
page 〈undefined〉.

1.1.12 scriba PurgeReaderMemory()

Call this function to release all memory that was allocated by the reader module. The
memory data is needed so long as long the lexical analyzer has finished.

void scriba_PurgeReaderMemory(pSbProgram pProgram
);

1.1.13 scriba PurgeLexerMemory()

void scriba_PurgeLexerMemory(pSbProgram pProgram
);

1.1.14 scriba PurgeSyntaxerMemory()

void scriba_PurgeSyntaxerMemory(pSbProgram pProgram
);

1.1.15 scriba PurgeBuilderMemory()

void scriba_PurgeBuilderMemory(pSbProgram pProgram
);

1.1.16 scriba PurgePreprocessorMemory()

This function purges the memory that was needed to run the preprocessors.
void scriba_PurgePreprocessorMemory(pSbProgram pProgram
);

1.1.17 scriba PurgeExecuteMemory()

This function purges the memory that was needed to execute the program, but before
that it executes the finalization part of the execution.

void scriba_PurgeExecuteMemory(pSbProgram pProgram
);

1.1.18 scriba SetFileName()

Call this function to set the file name where the source informaton is. This file name is
used by the functions See 〈undefined〉 [scriba LoadBinaryProgram()], page 〈undefined〉 and
See 〈undefined〉 [scriba LoadSourceProgram], page 〈undefined〉 as well as error reporting
functions to display the location of the error.



6 ScriptBasic Source Files

int scriba_SetFileName(pSbProgram pProgram,
char *pszFileName

);

The argument pszFileName should be zchar terminated string holding the file name.

1.1.19 scriba GettingConfiguration()

See 〈undefined〉 [scriba LoadConfiguration()], page 〈undefined〉 and See 〈undefined〉
[scriba InheritConfiguration()], page 〈undefined〉 can be used to specify configuration
information for a ScriptBasic program. Here we describe the differences and how to
use the two functions for single-process single-basic and for single-process multiple-basic
applications.

To execute a ScriptBasic program you usually need configuration information. The
configuration information for the interpreter is stored in a file. The function See 〈unde-
fined〉 [scriba LoadConfiguration()], page 〈undefined〉 reads the file and loads it into memory
into the SbProgram object. When the object is destroyed the configuration information is
automatically purged from memory.

Some implementations like the Eszter SB Engine variation of ScriptBasic starts several
interpreter thread within the same process. In this case the configuration information is
read only once and all the running interpreters share the same configuration information.

To do this the embedding program has to create a pseudo SbProgram object that does
not run any ScriptBasic program, but is used only to load the configuration informa-
tion calling the function See 〈undefined〉 [scriba LoadConfiguration()], page 〈undefined〉.
Other SbProgram objects that do intepret ScriptBasic program should inherit this configu-
ration calling the function See 〈undefined〉 [scriba InheritConfiguration()], page 〈undefined〉.
When a SbProgram object is destroyed the configuration is not destroyed if that was inher-
ited belonging to a different object. It remains in memory and can later be used by other
intrepreter instances.

Inheriting the configuration is fast because it does not require loading the configuration
information from file. This is essentially sets a pointer in the internal interpreter structure to
point to the configuration information held by the other object and all the parallel running
interpreters structures point to the same piece of memory holding the common configuration
information.

See the configuration handling functions See 〈undefined〉 [scriba LoadConfiguration()],
page 〈undefined〉 and See 〈undefined〉 [scriba InheritConfiguration()], page 〈undefined〉.

1.1.20 scriba LoadConfiguration()

This function should be used to load the configuration information from a file.

The return value is zero on success and the error code when error happens.

int scriba_LoadConfiguration(pSbProgram pProgram,
char *pszForcedConfigurationFileName

);



Chapter 1: Introduction 7

1.1.21 scriba GetConfigFileName()

This function tells whet the configuration file is. There is no need to call this function to
read the configuration file. This is needed only when the main program want to manipulate
the configuration file in some way. For example the command line version of ScriptBasic
uses this function when the option -k is used to compile a configuration file.

The first argument has to be a valid ScriptBasic program object. The second argument
should point to a valid char * pointer that will get the pointer value to the configuration
file name after the function returns.

int scriba_GetConfigFileName(pSbProgram pProgram,
char **ppszFileName

);

The function returns zero if no error happens, or the error code.

1.1.22 scriba InheritConfiguration()

Use this function to get the configuration from another program object.
The return value is zero on success and error code if error has happened.

int scriba_InheritConfiguration(pSbProgram pProgram,
pSbProgram pFrom

);

1.1.23 scriba InitModuleInterface()

Initialize the Support Function Table of a process level ScriptBasic program object to be
inherited by other program objects. If you read it first time, read on until you understand
what this function really does and rather how to use it!

This is going to be a bit long, but you better read it along with the documentation of
the function See 〈undefined〉 [scriba InheritModuleInterface()], page 〈undefined〉.

This function is needed only for programs that are
multi thread running several interpreters simultaneous in a single process
support modules like the sample module mt that support multithread behaviour and
need to implement worker thread needing call-back functions.

You most probably know that modules can access system and ScriptBasic fucntions via a
call-back table. That is a huge struct containing pointers to the functions that ScriptBasic
implements. This is the ST (aka support table).

This helps module writers to write system independent code as well as to access ScriptBa-
sic functions easily. On the other hand modules are also free to alter this table and because
many functions, tough not all are called via this table by ScriptBasic itself a module may
alter the core behavior of ScriptBasic.

For this reason each interpreter has its own copy of ST. This means that if an interpreter
alters the table it has no effect on another interpreter running in the same process in anther
thread.



8 ScriptBasic Source Files

This is fine so far. How about modules that run asynchronous threads? For example
the very first interpter thread that uses the module mt starts in the initialization a thread
that later deletes all sessions that time out. This thread lives a long life.

The thread that starts the worker thread is an interpreter thread and has its own copy
of the ST. The thread started asynchronous however should not use this ST because the
table is purged from memory when the interpreter instance it blelonged to finishes.

To have ST for worker threads there is a need for a program object that is not purged
from memory so long as long the process is alive. Fortunately there is such an object:
the configuration program object. Configuration is usually read only once by multi-thread
implementations and the same configuration information is shared by the serveral threads.
The same way the several program objects may share a ST.

The difference is that configuration is NOT altered by the interpreter or by any module
in any way but ST may. Thus each execution object has two pointers: pST and pSTI. While
pST points to the support table that belongs to the interpreter instance the secondpointer
pSTI points to a ST that is global for the whole process and is permanent. This ST is to
be used by worker threads and should not be altered by the module without really good
reason.

Thus: Don’t call this function for normal program objects! For usualy program objects
module interface is automatically initialized when the first module function is called. Call
this function to initialize a ST for a pseudo program object that is never executed but rather
used to inherit this ST for worker threads.

int scriba_InitModuleInterface(pSbProgram pProgram
);

1.1.24 scriba InheritModuleInterface()

Inherit the support function table (ST) from another program object.
Note that the program object is going to initialize its own ST the normal way. The

inherited ST will only be used by worker threads that live a long life and may exist when
the initiating interpreter thread already exists.

For further information please read the description of the function See 〈undefined〉
[scriba InitModuleInterface()], page 〈undefined〉.

int scriba_InheritModuleInterface(pSbProgram pProgram,
pSbProgram pFrom

);

1.1.25 scriba InheritExecuteObject()

int scriba_InheritExecuteObject(pSbProgram pProgram,
pSbProgram pFrom

);

1.1.26 scriba SetProcessSbObject()

Use this program in multi-thread environment to tell the actual interpreter which object
is the process level pseudo object that



Chapter 1: Introduction 9

holds the shared (among interpreter thread objects) configuration information (see See
〈undefined〉 [scriba InheritConfiguration()], page 〈undefined〉)
holds the process level module interface (see See 〈undefined〉 [scriba InheritModuleInterface()],
page 〈undefined〉)
holds the list of loaded modules that are not unloaded by the thread loaded the module

If the embeddingprogram calls this function there is no need to call See
〈undefined〉 [scriba InheritConfiguration()], page 〈undefined〉 and See 〈undefined〉
[scriba InheritModuleInterface()], page 〈undefined〉. This function call does all those tasks
and also other things.

int scriba_SetProcessSbObject(pSbProgram pProgram,
pSbProgram pProcessObject

);

1.1.27 scriba ShutdownMtModules()

A multi threaded application should call this function for the process SB object when
the process finishes. Calling this function will call each of the shutdown functions of those
external modules that decided to keep in memory and export the shutdown function named
shutmodu. This allows these modules to gracefully shut down their operation. As an
example cached data can be written to disk, or database connections can be closed.

int scriba_ShutdownMtModules(pSbProgram pProgram
);

1.1.28 scriba SetCgiFlag()

You can call this function to tell the reporting subsystem that this code runs in a CGI
environment and therefore it should format error messages according to the CGI standard
sending to the standard output including HTTP headers and HTML code pieces.

void scriba_SetCgiFlag(pSbProgram pProgram
);

1.1.29 scriba SetReportFunction()

This function should be used to set the report function for a program. The report
function is used to send info, warning, error, fatal and internal error messages to the user.

In case you want to implement a specific report function see the sample implementation
in the file report.c. The documentation of the function report_report describes not only
the details of the sample implementation but also the implementation requests for other
reporting functions.

void scriba_SetReportFunction(pSbProgram pProgram,
void *fpReportFunction

);



10 ScriptBasic Source Files

1.1.30 scriba SetReportPointer()

This pointer will be passed to the reporting function. The default reporting uses this
pointer as a FILE * pointer. The default value for this pointer is stderr.

Other implementations of the reporting function may use this pointer according their
needs. For example the WIN32 IIS ISAPI implementation uses this pointer to point to the
extension controll block structure.

void scriba_SetReportPointer(pSbProgram pProgram,
void *pReportPointer

);

1.1.31 scriba SetStdin()

You can call this function to define a special standard input function. This pointer should
point to a function that accepts a void * pointer as argument. Whenever the ScriptBasic
program tries to read from the standard input it calls this function pasing the embedder
pointer as argument.

If the stdin function is not defined or the parameter is NULL the interpreter will read
the normal stdin stream.

void scriba_SetStdin(pSbProgram pProgram,
void *fpStdinFunction

);

1.1.32 scriba SetStdout()

You can call this function to define a special standard output function. This pointer
should point to a function that accepts a (char, void *) arguments. Whenever the Script-
Basic program tries to send a character to the standard output it calls this function. The
first parameter is the character to write, the second is the embedder pointer.

If the standard output function is not defined or the parameter is NULL the interpreter
will write the normal stdout stream.

void scriba_SetStdout(pSbProgram pProgram,
void *fpStdoutFunction

);

1.1.33 scriba SetEmbedPointer()

This function should be used to set the embed pointer.

The embed pointer is a pointer that is not used by ScriptBasic itself. This pointer is
remembered by ScriptBasic and is passed to call-back functions. Like the standard input,
output and environment functions that the embedding application may provide this pointer
is also available to external modules implemented in C or other compiled language in DLL
or SO files.



Chapter 1: Introduction 11

The embedder pointer should usually point to the struct of the thread local data. For
example the Windows NT IIS variation of ScriptBasic sets this variable to point to the
extension control block.

If this pointer is not set ScriptBasic will pass NULL pointer to the extensions and to the
call-back function.

void scriba_SetEmbedPointer(pSbProgram pProgram,
void *pEmbedder

);

1.1.34 scriba SetEnvironment()

You can call this function to define a special environment query function. This pointer
should point to a function that accepts a (void *, char *, long ) arguments.

Whenever the ScriptBasic program tries to get the value of an enviroment variable it
calls this function. The first argument is the embedder pointer.

The second argument is the name of the environment variable to retrieve or NULL.

The third argument is either zero or is the serial number of the environment variable.

ScriptBasic never calls this function with both specifying the environment variable name
and the serial number.

The return value of the function should either be NULL or should point to a string that
holds the zero character terminated value of the environment variable. This string is not
changed by ScriptBasic.

If the special environment function is not defined or is NULL ScriptBasic uses the usual
environment of the process calling the system functiongetenv.

void scriba_SetEnvironment(pSbProgram pProgram,
void *fpEnvirFunction

);

For a good example of a self-written environment function see the source of the Eszter
SB Engine that alters the environment function so that the ScriptBasic programs feel as if
they were executed in a real CGI environment.

1.1.35 scriba LoadBinaryProgramWithOffset()

Use this function to load ScriptBasic program from a file that is already compiled into
internal form, and the content of the program is starting on lOffset

The return value is the number of errors (hopefully zero) during program load.

int scriba_LoadBinaryProgramWithOffset(pSbProgram pProgram,
long lOffset,
long lEOFfset

);

Before calling this function the function See 〈undefined〉 [scriba SetFileName()],
page 〈undefined〉 should have been called specifying the file name.



12 ScriptBasic Source Files

1.1.36 scriba LoadBinaryProgram()

Use this function to load ScriptBasic program from a file that is already compiled into
internal form.

The return value is the number of errors (hopefully zero) during program load.
int scriba_LoadBinaryProgram(pSbProgram pProgram
);

Before calling this function the function See 〈undefined〉 [scriba SetFileName()],
page 〈undefined〉 should have been called specifying the file name.

1.1.37 scriba InheritBinaryProgram()

Use this function in application that keeps the program code in memory.
int scriba_InheritBinaryProgram(pSbProgram pProgram,

pSbProgram pFrom
);

The function inherits the binary code from the program object pFrom. In server type
applications the compiled binary code of a BASIC program may be kept in memory. To
do this a pseudo program object should be created that loads the binary code and is not
destroyed.

The program object used to execute the code should inherit the binary code from this
pseudo object calling this function. This is similar to the configuration inheritance.

1.1.38 scriba LoadInternalPreprocessor()

This function can be used by embedding applications to load an internal preprocessor
into the interpereter. Note that preprocessors are usually loaded by the reader module
when a preprocess statement is found. However some preprocessors in some variation of
the interpreter may be loaded due to configuration or command line option and not because
the source requests it.

The preprocessors that are requested to be loaded because the source contains a
preprocess line usually implement special language fetures. The preprocessors that are
loaded independent of the source because command line option or some other information
tells the variation to call this function are usually debuggers, profilers.

(To be honest, by the time I write it there is no any internal preprocessors developed
except the test one, but the statement above will become true.)

int scriba_LoadInternalPreprocessor(pSbProgram pProgram,
char *ppszPreprocessorName[]

);

The first argument is the program object. If the program object does not have a pre-
processor object the time it is called the preprocessor object is created and initiated.

The second argument is the array of names of the preprocessor as it is present in the
configuration file. This is not the name of the DLL/SO file, but rather the symbolic name,
which is associated with the file. The final element of the array has to be NULL.

The return value is zero or the error code.



Chapter 1: Introduction 13

1.1.39 scriba ReadSource()

Loads the source code of a ScriptBasic program from a text file.

The return code is the number of errors happened during read.

int scriba_ReadSource(pSbProgram pProgram
);

Do not get confused! This function only reads the source. Does not compile it. You
will usually need See 〈undefined〉 [scriba LoadSourceProgram()], page 〈undefined〉 that does
reading, analyzing, building and all memory releases leaving finally a ready-to-run code in
memory.

Before calling this function the function See 〈undefined〉 [scriba SetFileName()],
page 〈undefined〉 should have been called specifying the file name.

See also See 〈undefined〉 [scriba ReadSource()], page 〈undefined〉, See
〈undefined〉 [scriba DoLexicalAnalysis()], page 〈undefined〉, See 〈undefined〉
[scriba DoSyntaxAnalysis()], page 〈undefined〉, See 〈undefined〉 [scriba BuildCode()],
page 〈undefined〉.

1.1.40 scriba DoLexicalAnalysis()

This function performs lexical analysis after the source file has beed read.

This function is rarely needeed by applicationdevelopers. See See 〈undefined〉
[scriba LoadSourceProgram()], page 〈undefined〉 instead.

int scriba_DoLexicalAnalysis(pSbProgram pProgram
);

See also See 〈undefined〉 [scriba ReadSource()], page 〈undefined〉, See
〈undefined〉 [scriba DoLexicalAnalysis()], page 〈undefined〉, See 〈undefined〉
[scriba DoSyntaxAnalysis()], page 〈undefined〉, See 〈undefined〉 [scriba BuildCode()],
page 〈undefined〉.

1.1.41 scriba DoSyntaxAnalysis()

This function performs syntax analysis after the lexical analysis has been finished.

This function is rarely needeed by applicationdevelopers. See See 〈undefined〉
[scriba LoadSourceProgram()], page 〈undefined〉 instead.

int scriba_DoSyntaxAnalysis(pSbProgram pProgram
);

See also See 〈undefined〉 [scriba ReadSource()], page 〈undefined〉, See
〈undefined〉 [scriba DoLexicalAnalysis()], page 〈undefined〉, See 〈undefined〉
[scriba DoSyntaxAnalysis()], page 〈undefined〉, See 〈undefined〉 [scriba BuildCode()],
page 〈undefined〉.



14 ScriptBasic Source Files

1.1.42 scriba BuildCode()

This function builds the finall ready-to-run code after the syntax analisys has been
finished.

This function is rarely needeed by applicationdevelopers. See See 〈undefined〉
[scriba LoadSourceProgram()], page 〈undefined〉 instead.

int scriba_BuildCode(pSbProgram pProgram
);

See also See 〈undefined〉 [scriba ReadSource()], page 〈undefined〉, See
〈undefined〉 [scriba DoLexicalAnalysis()], page 〈undefined〉, See 〈undefined〉
[scriba DoSyntaxAnalysis()], page 〈undefined〉, See 〈undefined〉 [scriba BuildCode()],
page 〈undefined〉.

1.1.43 scriba IsFileBinaryFormat()

This function decides if a file is a correct binary format ScriptBasic code file and returns
true if it is binary. If the file is a ScriptBasic source file or an older version binary of
ScriptBasic or any other file it returns zero.

This function just calls the function build_IsFileBinaryFormat

int scriba_IsFileBinaryFormat(pSbProgram pProgram
);

1.1.44 scriba GetCacheFileName()

Calculate the name of the cache file for the given source file name and store the calculated
file name in the program object.

int scriba_GetCacheFileName(pSbProgram pProgram
);

The program returns zero or the error code. It returns SCRIBA_ERROR_FAIL if there is
no cache directory configured.

The code uses a local buffer of length 256 bytes. The full cached file name should fit
into this otherwise the program will return SCRIBA_ERROR_BUFFER_SHORT.

The code does not check if there exists an appropriate cache directory or file. It just
calculates the file name.

1.1.45 scriba UseCacheFile()

Call this function to test that the cache file is usable. This function calls the function
See 〈undefined〉 [scriba GetCacheFileName()], page 〈undefined〉 to calculate the cache file
name.

If
the cache file exists
is newer than the source file set by See 〈undefined〉 [scriba SetFileName()], page 〈un-
defined〉



Chapter 1: Introduction 15

is a correct ScriptBasic binary file

then this function alters the source file name property (pszFileName) of the program
object so that the call to See 〈undefined〉 [scriba LoadBinaryProgram()], page 〈undefined〉
will try to load the cache file.

int scriba_UseCacheFile(pSbProgram pProgram
);

The function returns zero or the error code. The function returns SCRIBA_ERROR_FAIL
in case the cache file is old, or not valid. Therefore returning a positive value does not
neccessarily mean a hard error.

1.1.46 scriba SaveCacheFile()

Call this function to generate a cache file after a successful program compilation.

int scriba_SaveCacheFile(pSbProgram pProgram
);

The function returns zero (SCRIBA_ERROR_SUCCESS) if there was no error. This does not
mean that the cache file was saved. If there is no cache directory configured doing nothing
is success.

Returning any positive error code means that ScriptBasic tried to write a cache file but
it could not.

1.1.47 scriba RunExternalPreprocessor()

This function should be called to execute external preprocessors.

This function does almost nothing else but calls the function epreproc().

int scriba_RunExternalPreprocessor(pSbProgram pProgram,
char **ppszArgPreprocessor

);

The argument ppszArgPreprocessor should point to a string array. This string array
should contain the configured names of the preprocessors that are applied one after the
other in the order they are listed in the array.

Note that this array should contain the symbolic names of the preprocessors. The actual
preprocessor executable programs, or command lines are defined in the configuration file.

After calling this function the source file name property of the program object
(pszFileName) is also modified so that it points to the result of the preprocessor. This
means that after the successful return of this function the application may immediately
call See 〈undefined〉 [scriba LoadSourceProgram()], page 〈undefined〉.

If there is any error during the preprocessor execution the function returns some error
code (returned by epreproc) otherwise the return value is zero.



16 ScriptBasic Source Files

1.1.48 scriba SaveCode()

Call this function to save the compiled byte code of the program into a specific file.
This function is called by the function See 〈undefined〉 [scriba SaveCacheFile()], page 〈un-
defined〉.

int scriba_SaveCode(pSbProgram pProgram,
char *pszCodeFileName

);

The function does nothing else, but calls build_SaveCode.

The return code is zero or the error code returned by build_SaveCode.

1.1.49 scriba SaveCCode()

void scriba_SaveCCode(pSbProgram pProgram,
char *pszCodeFileName

);

1.1.50 scriba SaveECode()

void scriba_SaveECode(pSbProgram pProgram,
char *pszInterpreter,
char *pszCodeFileName

);

1.1.51 scriba LoadSourceProgram()

Call this function to load a BASIC program from its source format after optionally
checking that there is no available cache file and after executing all required prepro-
cessors. This function calls See 〈undefined〉 [scriba ReadSource()], page 〈undefined〉,
See 〈undefined〉 [scriba DoLexicalAnalysis()], page 〈undefined〉, See 〈undefined〉
[scriba DoSyntaxAnalysis()], page 〈undefined〉, See 〈undefined〉 [scriba BuildCode()],
page 〈undefined〉, and also releases the memory that was needed only for code
building calling See 〈undefined〉 [scriba PurgeReaderMemory()], page 〈undefined〉,
See 〈undefined〉 [scriba PurgeLexerMemory()], page 〈undefined〉, See 〈undefined〉
[scriba PurgeSyntaxerMemory()], page 〈undefined〉.

After the successful completion of this program the BASIC program is in the memory
in the ready-to-run state.

int scriba_LoadSourceProgram(pSbProgram pProgram
);

Before calling this function the function See 〈undefined〉 [scriba SetFileName()],
page 〈undefined〉 should have been called specifying the file name.

The return value is zero (SCRIBA_ERROR_SUCCESS) or the error code returned by the
underlying layer that has detected the error.



Chapter 1: Introduction 17

1.1.52 scriba LoadProgramString()

Use this function to convert a string containing a BASIC program that is already
in memory to ready-to-run binary format. This function is same as See 〈undefined〉
[scriba LoadSourceProgram()], page 〈undefined〉 except that this function reads the source
code from a string instead of a file.

int scriba_LoadProgramString(pSbProgram pProgram,
char *pszSourceCode,
unsigned long cbSourceCode

);

The argument pProgram is the program object. The argument pszSourceCode is the
BASIC program itself in text format. Because the source code may contain ZCHAR just
for any chance the caller has to provide the number of characters in the buffer via the
argument cbSourceCode. In case the source program is zero terminated the caller can
simply say strlen(pszSourceCode) to give this argument.

Before calling this function the function See 〈undefined〉 [scriba SetFileName()],
page 〈undefined〉 may be called. Altough the source code is read from memory and thus
there is no source file the BASIC program may use the command include or import that
includes another source file after reading the code. If the program does so the reader
functions need to know the actual file name of the source code to find the file to be
included. To help this process the caller using this function may set the file name calling
See 〈undefined〉 [scriba SetFileName()], page 〈undefined〉. However that file is never used
and need not even exist. It is used only to calculate the path of included files that are
specified using relative path.

The return value is zero (SCRIBA_ERROR_SUCCESS) or the error code returned by the
underlying layer that has detected the error.

1.1.53 scriba Run()

Call this function to execute a program. Note that you can call this function many
times. Repetitive execution of the same program will execute the ScriptBasic code again
and again with the global variables keeping their values.

If you want to reset the global variables you have to call See 〈undefined〉
[scriba ResetVariables()], page 〈undefined〉.

There is no way to keep the value of the local variables.
The argument pszCommandLineArgument is the command part that is passed to the

BASIC program.
int scriba_Run(pSbProgram pProgram,

char *pszCommandLineArgument
);

The return value is zero in case of success or the error code returned by the underlying
execution layers.

Note that you can not call BASIC subroutines or functions without initializations that
scriba_Run performs. You also can not access global variables. Therefore you either have



18 ScriptBasic Source Files

to call scriba_Run or its brother See 〈undefined〉 [scriba NoRun()], page 〈undefined〉 that
performs the initializations without execution.

You also have to call See 〈undefined〉 [scriba NoRun()], page 〈undefined〉 if you want to
execute a program with some global variables having preset values that you want to set from
the embedding C program. In that case you have to call See 〈undefined〉 [scriba NoRun()],
page 〈undefined〉 then one or more times See 〈undefined〉 [scriba SetVariable()], page 〈un-
defined〉 and finally Run.

1.1.54 scriba NoRun()

In case the embedding program want to set global variables and execute subroutines
without or before starting the main program it has to call this function first. It does all
the initializations that are done by See 〈undefined〉 [scriba Run()], page 〈undefined〉 except
that it does not actually execute the program.

After calling this function the main program may access global variables and call BASIC
functions.

int scriba_NoRun(pSbProgram pProgram
);

See also See 〈undefined〉 [scriba Run()], page 〈undefined〉.

1.1.55 scriba ResetVariables()

Call this function if you want to execute a program object that was already executed but
you do not want the global variables to keep their value they had when the last execution
of the BASIC code finished.

Global variables in ScriptBasic are guaranteed to be undef before they get any other
value and some programs depend on this.

void scriba_ResetVariables(pSbProgram pProgram
);

See also See 〈undefined〉 [scriba SetVariable()], page 〈undefined〉, See 〈undefined〉
[scriba Run()], page 〈undefined〉, See 〈undefined〉 [scriba NoRun()], page 〈undefined〉.

1.1.56 scriba Call()

This function can be used to call a function or subroutine. This function does not get
any arguments and does not provide any return value.

int scriba_Call(pSbProgram pProgram,
unsigned long lEntryNode

);

The return value is zero or the error code returned by the interpreter.
Note on how to get the Entry Node value:

The argument lEntryNode should be the node index of the subroutine or function
that we want to execute. This can be retrieved using the function See 〈undefined〉
[scriba LookupFunctionByName()], page 〈undefined〉 if the name of the function or



Chapter 1: Introduction 19

subroutine is know. Another method is that the BASIC program stored this value in some
global variables. BASIC programs can access this information calling the BASIC function
Address( f() ).

1.1.57 scriba CallArg()

This function can be used to call a function or subroutine with arguments passed by
value. Neither the return value of the SUB nor the modified argument variables are not
accessible via this function. CallArg is a simple interface to call a ScriptBasic subroutine
or function with argument.

int scriba_CallArg(pSbProgram pProgram,
unsigned long lEntryNode,
char *pszFormat, ...

);

Arguments

pProgram is the class variable.

lEntryNode is the start node of the SUB. (See See 〈undefined〉 [scriba Call()], page 〈un-
defined〉 note on how to get the entry node value.)

pszFormat is a format string that defines the rest of the areguments

The format string is case insensitive. The characters u, i, r, b and s have meaning. All
other characters are ignored. The format characters define the type of the arguments from
left to right.

u means to pass an undef to the SUB. This format character is exceptional that it does
not consume any function argument.

i means that the next argument has to be long and it is passed to the BASIC SUB as
an integer.

r means that the next argument has to be double and it is passed to the BASIC SUB
as a real.

s means that the next argument has to be char * and it is passed to the BASIC SUB
as a string.

b means that the next two arguments has to be long cbBuffer and unsigned char
*Buffer. The cbBuffer defines the length of the Buffer.

Note that this SUB calling function is a simple interface and has no access to the modified
values of the argument after the call or the return value.

If you need any of the functionalities that are not implemented in this function call a
more sophisticated function.

Example:

iErrorCode = scriba_CallArg(&MyProgram,lEntry,"i i s d",13,22,"My string.",54.12);



20 ScriptBasic Source Files

1.1.58 scriba DestroySbArgs()

This function can be used to release the memory used by arguments created by the
function See 〈undefined〉 [scriba NewSbArgs()], page 〈undefined〉.

void scriba_DestroySbArgs(pSbProgram pProgram,
pSbData Args,
unsigned long cArgs

);

Arguments:
pProgram class variable
Args pointer returned by See 〈undefined〉 [scriba NewSbArgs()], page 〈undefined〉
cArgs the number of arguments pointed by Args

1.1.59 scriba NewSbArgs()

Whenever you want to handle the variable values that are returned by the scriba subrou-
tine you have to call See 〈undefined〉 [scriba CallArgEx()], page 〈undefined〉. This function
needs the arguments passed in an array of SbDtata type.

This function is a usefuly tool to convert C variables to an array of SbData
pSbData scriba_NewSbArgs(pSbProgram pProgram,

char *pszFormat, ...
);

The arguments passed are
pProgram is the class variable
pszFormat is the format string

The format string is case insensitive. The characters u, i, r, b and s have meaning. All
other characters are ignored. The format characters define the type of the arguments from
left to right.

u means to pass an undef to the SUB. This format character is exceptional that it does
not consume any function argument.
i means that the next argument has to be long and it is passed to the BASIC SUB as
an integer.
r means that the next argument has to be double and it is passed to the BASIC SUB
as a real.
s means that the next argument has to be char * and it is passed to the BASIC SUB
as a string.
b means that the next two arguments has to be long cbBuffer and unsigned char
*Buffer. The cbBuffer defines the leng of the Buffer.

Example:

pSbData MyArgs;



Chapter 1: Introduction 21

MyArgs = scriba_NewSbArgs(pProgram,"i i r s b",13,14,3.14,"string",2,"two character string");
if( MyArgs == NULL )error("memory alloc");

scriba_CallArgEx(pProgram,lEntry,NULL,5,MyArgs);

This example passes five arguments to the ScriptBasic subroutine. Note that the last
one is only two character string, the rest of the characters are ignored.

1.1.60 scriba CallArgEx()

This is the most sophisticated function of the ones that call a ScriptBasic subroutine.
This function is capable handling parameters to scriba subroutines, and returning the mod-
ified argument variables and the return value.

int scriba_CallArgEx(pSbProgram pProgram,
unsigned long lEntryNode,
pSbData ReturnValue,
unsigned long cArgs,
pSbData Args

);

The arguments:
pProgram is the program object pointer.
lEntryNode is the entry node index where the BASIC subroutine or function starts
(See See 〈undefined〉 [scriba Call()], page 〈undefined〉 note on how to get the entry
node value.)
ReturnValue is the return value of the function or subroutine
cArgs is the number of argments passed to the function
Args argument data array

1.1.61 scriba LookupFunctionByName()

This function should be used to get the entry point of a function knowing the name of
the function. The entry point should not be treated as a numerical value rather as a handle
and to pass it to functions like See 〈undefined〉 [scriba CallArgEx()], page 〈undefined〉.

long scriba_LookupFunctionByName(pSbProgram pProgram,
char *pszFunctionName

);

The return value of the function is the entry node index of the function named or zero
if the function is not present in the program.

1.1.62 scriba LookupVariableByName()

This function can be used to get the serial number of a global variable knowing the name
of the variable.



22 ScriptBasic Source Files

Note that all variables belong to a name space. Therefore if you want to retrieve the
global variable foo you have to name it main::foo.

long scriba_LookupVariableByName(pSbProgram pProgram,
char *pszVariableName

);

The return value is the serial number of the global avriable or zero if there is no variable
with that name.

Note that the second argument, the name of the global variable, is not going under the
usual name space manipulation. You have to specify the variable name together with the
name space. For example the variable a will not be found, but the variable main::a will
be.

1.1.63 scriba GetVariableType()

Get the type of the value that a variable is currently holding. This value can be

SBT_UNDEF

SBT_DOUBLE

SBT_LONG

SBT_STRING

long scriba_GetVariableType(pSbProgram pProgram,
long lSerial

);

The argument lSerial should be the serial number of the variable as returned by See
〈undefined〉 [scriba LookupVariableByName()], page 〈undefined〉.

If there is no variable for the specified serian mumber (lSerial is not positive or larger
than the number of variables) the function returns SBT_UNDEF.

1.1.64 scriba GetVariable()

This function retrieves the value of a variable. A new SbData object is created and the
pointer to it is returned in pVariable. This memory space is automatically reclaimed when
the program object is destroyed or the function DestroySbData can be called.

int scriba_GetVariable(pSbProgram pProgram,
long lSerial,
pSbData *pVariable

);

The argument lSerial should be the serial number of the global variable as returned
by See 〈undefined〉 [scriba LookupVariableByName()], page 〈undefined〉.

The funtion returns SCRIBA_ERROR_SUCCESS on success,

SCRIBA_ERROR_MEMORY_LOW if the data cannot be created or

SCRIBA_ERROR_FAIL if the parameter lSerial is invalid.



Chapter 1: Introduction 23

1.1.65 scriba SetVariable()

This function sets the value of a global BASIC variable. You can call this function after
executing the program before it is reexecuted or after successfull call to See 〈undefined〉
[scriba NoRun()], page 〈undefined〉.

int scriba_SetVariable(pSbProgram pProgram,
long lSerial,
int type,
long lSetValue,
double dSetValue,
char *pszSetValue,
unsigned long size

);

The argument lSerial should be the serial number of the global variable as returned
by See 〈undefined〉 [scriba LookupVariableByName()], page 〈undefined〉.

The argument type should be one of the followings:

SBT_UNDEF

SBT_DOUBLE

SBT_LONG

SBT_STRING

SBT_ZCHAR

The function uses one of the arguments lSetValue, dSetValue or pszSetValue and the
other two are ignored based on the value of the argument type.

If the value of the argument type is SBT_UNDEF all initialization arguments are ignored
and the global variable will get the value undef.

If the value of the argument type is SBT_DOUBLE the argument dSetValue will be used
and the global variable will be double holding the value.

If the value of the argument type is SBT_LONG the argument lSetValue will be used and
the global variable will be long holding the value.

If the value of the argument type is SBT_STRING the argument pszSetValue will be used
and the global variable will be long holding the value. The length of the string should in
this case be specified by the variable size.

If the value of the argument type is SBT_ZCHAR the argument pszSetValue will be
used and the global variable will be long holding the value. The length of the string is
automatically calculated and the value passed in the variable size is ignored. In this case
the string pszSetValue should be zero character terminated.

The funtion returns SCRIBA_ERROR_SUCCESS on success,

SCRIBA_ERROR_MEMORY_LOW if the data cannot be created or

SCRIBA_ERROR_FAIL if the parameter lSerial is invalid.



24 ScriptBasic Source Files

1.1.66 scriba InitStaticModules()

This function calls the initialization functions of the modules that are statically linked
into the interpreter. This is essential to call this fucntion from the embedding main()
program in a variation that has one or more external modules staticallyl linked. If this
function is not called the module initialization will not be called, because the module is
never actually loaded and thus the operating system does not call the DllMain or _init
function.

The function has to be called before the first interpreter thread starts. In case of a single
thread variation this means that the function has to be called before the BASIC program
starts.

The function does not take any argument and does not return any value.
void scriba_InitStaticModules(void
);

1.1.67 scriba FinishStaticModules()

This function calls the finalization functions of the modules that are statically linked to
the interpreter. Such a function for a dynamically loaded module is started by the operating
system. Because the sttaically linked modules are not loaded the _fini function is not
called by the UNIX loader and similarly the function DllMain is not called by Windows
NT. Because some modules depend on the execution of this function this function has to
be called after the last interpreter thread has finished.

void scriba_FinishStaticModules(void
);

1.2 basext.c

1.2.1 basext GetArgsF()

This function can be used to get arguments simple and fast in extension modules. All
functionality of this function can be individually programmed using the besXXX macros.
Here it is to ease the programming of extension modules for most of the cases.

This function should be called like
iError = besGETARGS "ldz",&l1,&d1,&s besGETARGE

The macro besGETARGS (read GET ARGument Start) hides the complexity of the func-
tion call and the macro besGETARGE (read Get ARGument End) simply closes the function
call.

The first argument is format string. Each character specifies how the next argument
should be treated.

int basext_GetArgsF(pSupportTable pSt,
pFixSizeMemoryObject pParameters,
char *pszFormat,



Chapter 1: Introduction 25

...
);

The following characters are recognized:
i the next argument of the function call should point to a long variable. The Script-
Basic argument will be converted to long using the macro besCONVERT2LONG and will
be stored in the long variable.
r the same as l except that the argument should point a double and the basic argument
is converted to double using besCONVERT2DOUBLE.
z the next argument should point to a char * pointer. The function takes the next
BASIC argument as string, converts it to zero terminated string allocating space for
it. These variables SHOULD be released by the caller using the macro besFREE.
s the next argument should point to a unsigned char * pointer. The function takes
the next BASIC argument as string, converting it in case conversion is needed, and
sets the unsigned char * pointer to point to the string. This format character should
be used together with the character l
l the next argument should point to a long and the value of the variable will be the
length of the last string atgument (either z or s). If there was no previous string
argument the value returned will be zero.
p the next argument should point to a void * pointer. The BASIC argument value
should be a string of sizeof(void *) characters that will be copied into the pointer
argument. If the argument is not string or has not the proper size the function returns
COMMAND_ERROR_ARGUMENT_RANGE.
[ The arguments following this character are optional. Optional arguments may be
unspecified. This is the case when the BASIC function call has less number of argu-
ments or when the actual argument value is undef. In case of optional arguments the
undef values are converted to zero value of the appropriate type. This means 0 in case
of long, 0.0 in case of double, NULL in case of pointer and zero length string in case
of strings.
] Arguments following this character are mandatory (are not optional). When the
function starts to process the arguments they are mandatory by default. Using this
notation you can enclode the optional arguments between [ and ]. For example the
format string "ii[z]" means two long arguments and an optional zero terminated
string argument.
* The argument is skipped. This may be used during development of a function.

The return value of the function is zero in case there is no error or the error code.

1.3 memory.c

1.3.1 memory InitStructure()

Each execution context should have its own memory object responsible for the adminis-
tration of the variables and the memory storing the values assigned to variables.

This function initializes such a memory object.



26 ScriptBasic Source Files

int memory_InitStructure(pMemoryObject pMo
);

1.3.2 memory RegisterType()

This function should be used to register a variable type. The return value is the serial
number of the type that should later be used to reference the type.

int memory_RegisterType(pMemoryObject pMo,
unsigned long SizeOfThisType

);

The argument of the function is the size of the type in terms of bytes. Usually this is
calculated using the C structure sizeof.

If the type can not be registered -1 is returned.

1.3.3 memory RegisterTypes()

This function should be used to initialize the usual FixSizeMemoryObject types. This
sets some usual string sizes, but the caller may not call this function and set different size
objects.

void memory_RegisterTypes(pMemoryObject pMo
);

This function registers the different string sizes. In the current implementation a string
has at least 32 characters. If this is longer that that (including the terminating zchar)
then a 64 byte fix size object is allocated. If this is small enough then a 128 byte fix size
memory object is allocated and so on up to 1024 bytes. If a string is longer that that then
a LARGE OBJECT TYPE is allocated.

The reason to register these types is that this memory management module keeps a list
for these memory pieces and when a new short string is needed it may be available already
without calling malloc. On the other hand when a LARGE_OBJECT_TYPE value is released
it is always passed back to the operating system calling free.

1.3.4 memory DebugDump()

This is a debugging function that dumps several variable data to the standard output.
The actual behavior of the function may change according to the actual debug needs.

void memory_DebugDump(pMemoryObject pMo
);

1.3.5 memory NewVariable()

This function should be used whenever a new variable is to be allocated. The function
returns a pointer to a FixSizeMemoryObject structure that holds the variable information
and pointer to the memory that stores the actual value for the memory.

If there is not engough memory or the calling is illegal the returned value is NULL



Chapter 1: Introduction 27

pFixSizeMemoryObject memory_NewVariable(pMemoryObject pMo,
int type,
unsigned long LargeBlockSize

);

The second argument gives the type of the memory object to be allocated. If this value
is LARGE_BLOCK_TYPE then the third argument is used to determine the size of the memory
to be allocated. If the type if NOT LARGE_BLOCK_TYPE then this argument is ignored and
the proper size is allocated.

If the type has memory that was earlier allocated and released it is stored in a free list
and is reused.

1.3.6 memory ReleaseVariable()

This function should be used to release a memory object.

int memory_ReleaseVariable(pMemoryObject pMo,
pFixSizeMemoryObject p

);

1.3.7 memory NewString()

This function should be used to allocate string variable.

pFixSizeMemoryObject memory_NewString(pMemoryObject pMo,
unsigned long StringSize

);

The second argument specifies the length of th required string including.

The function checks the desired length and if this is small then is allocates a fix size
object. If this is too large then it allocates a LARGE_BLOCK_TYPE

1.3.8 memory NewCString()

This function should be used to allocate variable to store a constant string.

pFixSizeMemoryObject memory_NewCString(pMemoryObject pMo,
unsigned long StringSize

);

The second argument specifies the length of the required string.

1.3.9 memory SetRef()

Set the variable ppVar to reference the variable ppVal.

int memory_SetRef(pMemoryObject pMo,
pFixSizeMemoryObject *ppVar,
pFixSizeMemoryObject *ppVal

);



28 ScriptBasic Source Files

1.3.10 memory NewRef()

pFixSizeMemoryObject memory_NewRef(pMemoryObject pMo
);

1.3.11 memory IsUndef()

This function returns if the examined variable is undef. Since a variable containing
undef but having other variables referencing this variable is NOT stored as NULL examining
the variable agains NULL is not enough anymore since reference variables were introduced.

int memory_IsUndef(pFixSizeMemoryObject pVar
);

1.3.12 memory Type()

This function returns the type of the variable. In case the program does not want to
check the NULL undef, but wants to get VTYPE_UNDEF even if the variable is real undef being
NULL calling this function is safe. Use this function instead of the macro TYPE defined in
command.h is there is doubt.

int memory_Type(pFixSizeMemoryObject pVar
);

1.3.13 memory SelfOrRealUndef()

pFixSizeMemoryObject memory_SelfOrRealUndef(pFixSizeMemoryObject pVar
);

1.3.14 memory NewUndef()

pFixSizeMemoryObject memory_NewUndef(pMemoryObject pMo
);

1.3.15 memory ReplaceVariable()

int memory_ReplaceVariable(pMemoryObject pMo,
pFixSizeMemoryObject *Lval,
pFixSizeMemoryObject NewValue,
pMortalList pMortal,
int iDupFlag

);

1.3.16 memory NewLong()

pFixSizeMemoryObject memory_NewLong(pMemoryObject pMo
);



Chapter 1: Introduction 29

1.3.17 memory NewDouble()

pFixSizeMemoryObject memory_NewDouble(pMemoryObject pMo
);

1.3.18 memory CopyArray

pFixSizeMemoryObject memory_CopyArray(pMemoryObject pMo,
pFixSizeMemoryObject p

);

1.3.19 memory NewArray()

This function should be used whenever a new array is to be allocated.
pFixSizeMemoryObject memory_NewArray(pMemoryObject pMo,

long LowIndex,
long HighIndex

);

The index variables define the indices that are to be used when accessing an array
element. The index values are inclusive.

1.3.20 memory ReDimArray()

This function should be used when an array needs redimensioning. If the redimensioning
is succesful the function returns the pointer to the argument p. If memory allocation is
needed and the memory allocation fails the function returns NULL. In this case the original
array is not changed.

If the redimensioned array is smaller that the original no memory allocation takes place,
only the array elements (pointers) are moved.

pFixSizeMemoryObject memory_ReDimArray(pMemoryObject pMo,
pFixSizeMemoryObject p,
long LowIndex,
long HighIndex

);

1.3.21 memory CheckArrayIndex()

This function should be called before accessing a certain element of an array. The
function checks that the index is within the index limitsof the array and in case the index
is outside the index limits of the array it redimensionate the array.

The function returns the pointer passed as parameter p or NULL in case there is a
memory allocation error.

pFixSizeMemoryObject memory_CheckArrayIndex(pMemoryObject pMo,
pFixSizeMemoryObject p,
long Index

);



30 ScriptBasic Source Files

1.3.22 memory Mortalize()

This function should be used when a variable is to be put in a mortal list.

void memory_Mortalize(pFixSizeMemoryObject p,
pMortalList pMortal

);

Note that care should be taken to be sure that the variable is NOT on a mortal list. If
the variable is already on a mortal list calling this function will break the original list and
therefore may loose the variables that follow this one.

1.3.23 memory Immortalize()

Use this function to immortalize a variable. This can be used when the result of an
expression evaluation gets into a mortal variable and instead of copiing the value from the
mortal variable to an immortal variable the caller can immortalize the variable. However it
should know which mortal list the variable is on.

void memory_Immortalize(pFixSizeMemoryObject p,
pMortalList pMortal

);

1.3.24 memory NewMortal()

When an expression is evaluated mortal variables are needed to store the intermediate
results. These variables are called mortal variables. Such a variable is is allocated using
this function and specifying a variable of type MortalList to assign the mortal to the list
of mortal variables.

When the expression is evaluated all mortal variables are to be released and they are call-
ing the function memory_ReleaseMortals (see See 〈undefined〉 [memory ReleaseMortals()],
page 〈undefined〉).

pFixSizeMemoryObject memory_NewMortal(pMemoryObject pMo,
BYTE type,
unsigned long LargeBlockSize,
pMortalList pMortal

);

If the parameter pMortal is NULL the generated variable is not mortal.

1.3.25 memory DupImmortal()

This function creates a new mortal and copies the argument pVar into this new mortal.

pFixSizeMemoryObject memory_DupImmortal(pMemoryObject pMo,
pFixSizeMemoryObject pVar,
int *piErrorCode

);



Chapter 1: Introduction 31

1.3.26 memory DupVar()

This function creates a new mortal and copies the argument pVar into this new mortal.
pFixSizeMemoryObject memory_DupVar(pMemoryObject pMo,

pFixSizeMemoryObject pVar,
pMortalList pMyMortal,
int *piErrorCode

);

This function is vital, when used in operations that convert the values to long or double.
Expression evaluation may return an immortal value, when the expression is a simple vari-
able access. Conversion of the result would modify the value of the variable itself. Therefore
functions and operators call this function to duplicate the result to be sure that the value
they convert is mortal and to be sure they do not change the value of a variable when they
are not supposed to.

Note that you can duplicate long, double and string values, but you can not duplicate
arrays! The string value is duplicated and the characters are copied to the new location.
This is perfect. However if you do the same with an array the array pointers will point to
the same variables, which are not going to be duplicated. This result multiple reference to
a single value. This situation is currently not supported by this system as we do not have
either garbage collection or any other solution to support such memory structures.

1.3.27 memory DupMortalize()

This function creates a new mortal and copies the argument pVar into this new mortal
only if the value is immortal. If the value is mortal the it returns the original value.

pFixSizeMemoryObject memory_DupMortalize(pMemoryObject pMo,
pFixSizeMemoryObject pVar,
pMortalList pMyMortal,
int *piErrorCode

);

1.3.28 memory ReleaseMortals()

This function should be used to release the mortal variables.
When an expression is evaluated mortal variables are needed to store the intermediate

results. These variables are called mortal variables. Such a variable is is allocated using
this function and specifying a variable of type MortalList to assign the mortal to the list
of mortal variables.

void memory_ReleaseMortals(pMemoryObject pMo,
pMortalList pMortal

);

1.3.29 memory DebugDumpVariable()

This function is used for debugging purposes. (To debug ScriptBasic and not to debug
a BASIC program using ScriptBasic. :-o )



32 ScriptBasic Source Files

The function prints the content of a variable to the standard output.

void memory_DebugDumpVariable(pMemoryObject pMo,
pFixSizeMemoryObject pVar

);

1.3.30 memory DebugDumpMortals()

This function is used for debugging purposes. (To debug ScriptBasic and not to debug
a BASIC program using ScriptBasic. :-o )

The function prints the content of the mortal list to the standard output.

void memory_DebugDumpMortals(pMemoryObject pMo,
pMortalList pMortal

);

1.3.31 memory NewMortalString()

pFixSizeMemoryObject memory_NewMortalString(pMemoryObject pMo,
unsigned long StringSize,
pMortalList pMortal

);

If the parameter pMortal is NULL the generated variable is not mortal.

1.3.32 memory NewMortalCString()

pFixSizeMemoryObject memory_NewMortalCString(pMemoryObject pMo,
unsigned long StringSize,
pMortalList pMortal

);

If the parameter pMortal is NULL the generated variable is not mortal.

1.3.33 memory NewMortalLong()

pFixSizeMemoryObject memory_NewMortalLong(pMemoryObject pMo,
pMortalList pMortal

);

If the parameter pMortal is NULL the generated variable is not mortal.

1.3.34 memory NewMortalRef()

This function was never used. It was presented in the code to allow external modules to
create mortal reference variables. However later I found that the variable structure design
does not allow mortal reference variables and thus this function is nonsense.

Not to change the module interface defintion the function still exists but returns NULL,
like if memory were exhausted.



Chapter 1: Introduction 33

pFixSizeMemoryObject memory_NewMortalRef(pMemoryObject pMo,
pMortalList pMortal

);

If the parameter pMortal is NULL the generated variable is not mortal.

1.3.35 memory NewMortalDouble()

pFixSizeMemoryObject memory_NewMortalDouble(pMemoryObject pMo,
pMortalList pMortal

);

If the parameter pMortal is NULL the generated variable is not mortal.

1.3.36 memory NewMortalArray()

pFixSizeMemoryObject memory_NewMortalArray(pMemoryObject pMo,
pMortalList pMortal,
long IndexLow,
long IndexHigh

);

If the parameter pMortal is NULL the generated variable is not mortal.

1.4 epreproc.c

1.4.1 External preprocessor handling

This module starts the external preprocessors.
=toc

1.4.2 Execute external preprocessors

This function executes the external preprocessors that are needed to be executed either
by the command line options or driven by the extensions.

The command line option preprocessors are executed as listed in the character array
ppszArgPreprocessor. These preprocessors are checked to be run first.

If there is no preprocessors defined on the command line then the preprocessors defined
in the config file for the extensions are executed. The input file name is also modified by
the code. The input file name is modified so that it will contain the source code file name
after the preprocessing.

The return value of the function is the error code. This is PREPROC_ERROR_SUCCESS if
the preprocessing was successful. This value is zero. If the return value is positive this is
one of the error codes defined in the file errcodes.def prefixed by PREPROC_.

int epreproc(ptConfigTree pCONF,
char *pszInputFileName,



34 ScriptBasic Source Files

char **pszOutputFileName,
char **ppszArgPreprocessor,
void *(*thismalloc)(unsigned int),
void (*thisfree)(void *)

);

The first argument pCONF is the configuration data pointer which is passed to the con-
figuration handling routines.

The second argument pszInputFileName is the pointer to the pointer to the input file
name.

The third argument is an output variable. This will point to the output file name upon
success or to NULL. If this variable is NULL then an error has occured or the file needed no
preprocessing. The two cases can be separated based on the return value of the function.
If the file needed preprocessing and the preprocessing was successfully executed then this
variable will point to a ZCHAR string allocated via the function thismalloc. This is the
responsibility of the caller to deallocate this memory space after use calling the function
pointed by thisfree.

The fourth argument ppszArgPreprocessor is an array of preprocessors to be used on
the input file. This array contains pointers that point to ZCHAR strings. The ZCHAR
strings contain the symbolic names of the external preprocessors that are defined in the
configuration file. The configuration file defines the actual executable for the preprocessor
and the temporary directory where the preprocessed file is stored. The final element of this
pointer array should be NULL. If the pointer ppszArgPreprocessor is NULL or the pointer
array pointed by this contains only the terminating NULL pointer then the extensions of the
file name are used to determine what preprocessors are to be applied. Preprocessors are
applied from left to right order of the file extensions.

The arguments thismalloc and thisfree should point to malloc and free or to a
similar functioning function pair. These functions will be used via the myalloc.c module
and also to allocate the new pszOutputFileName string in case of success. This means that
the caller should use the function pointed by thisfree to release the string pointed by
pszOutputFileName after the function has returned.

1.5 ipreproc.c

1.5.1 Internal preprocessor handling

=abstract This module loads the internal preprocessors =end
=toc

1.5.2 Initialize the preprocessor structure

This function is called after the PreprocObject was allocated. It initializes the prepro-
cessor handling structures.

void ipreproc_InitStructure(pPreprocObject pPre
);



Chapter 1: Introduction 35

1.5.3 Release all memories allocated by preprocessors

This fucntion is called from the module scriba_* to release all memory that was allo-
cated by the preprocessors and were not released.

void ipreproc_PurgePreprocessorMemory(pPreprocObject pPre
);

1.5.4 Insert a new preprocessor into the preprocessor list

The preprocessors that are active are stored in a linked list. When there is any action
that needs a preprocessor this list is used to invoke the preprocessors. The preprocessors
are invoked in the order they were entered into the system. For example if there are two
lines in the source code saying:

use pre1
use pre2

then the preprocessor pre1 is loaded first and pre2 is loaded afterwards. When a pre-
processor is invoked the preprocesor pre1 is called first and pre2 is called on the result.
This function allocates a list element and inserts it to the end of the list.

pPreprocessor ipreproc_InsertPreprocessor(pPreprocObject pPre
);

The argument is the preprocessor object, environment.
The return value is pointer to the list element or NULL if memory allocation occured.

1.5.5 Delete a preprocessor from the list of preprocessors

This function deletes a preprocessor from the list of preprocessors. The preprocessor
was inserted into the list using the function InsertPreprocessor.

This function unhooks the element from the list and also releases the memory that was
occupied by the list element. The function does not unload the shared object (or DLL
under Windows NT) from the memory.

void ipreproc_DeletePreprocessor(pPreprocObject pPre,
pPreprocessor pOld

);

The first argument is the preprocessor object environment. The second argument is the
pointer to the list element to be deleted.

1.5.6 Load an internal preprocessor

This function gets the name of an external preprocessor to load. The function searches
the configuration information for the named preprocessor, loads the DLL/SO and invokes
the initiation function of the preprocessor.

int ipreproc_LoadInternalPreprocessor(pPreprocObject pPre,
char *pszPreprocessorName

);



36 ScriptBasic Source Files

The first argument is the pointer to the ScriptBasic preprocessor object to access the
configuration information and the list of loaded preprocessors to put the actual one on the
list.

The second argument is the name of the preprocessor as named in the configuration file,
for example

preproc (
internal (
sample "C:\\ScriptBasic\\bin\\samplepreprocessor.dll"
)

The return value is zero or the error code.

1.5.7 Process preprocessor requests

This function is used by ScriptBasic at certain points of the execution to start the
preprocessors. It calls each loaded preprocessor one after the other until there is no more
preprocessors or one of them alters the command variable to PreprocessorDone.

This function gets three arguments.

int ipreproc_Process(pPreprocObject pPre,
long lCommand,
void *pPointer

);

pRe is the preprocessor object.

lCommand is the command for the preprocessor to execute. For the possible values look
at the file prepext.h (created from prepext.c) enum PreprocessorCommands

pPointer is a pointer to a structure. The structure actually depends on the actual value
of lCommand. For different commands this pointer points to different structures.

When the preprocessors are called they can alter the long variable lCommand passed to
them by reference.

When a preprocessor in this variable returns the value PreprocessorDone the prepro-
cessing in the actual stage is stopped and no further proreprocessor is invoked. However
this has no effect on later preprocessor incocation. Returning this value in this variable
solely means that the preprocessor has done all work that has to be done at the very point
and thus there is no need of further preprocessor handling.

When a preprocessor in this variable returns the value PreprocessorUnload the function
unhooks the preprocessor from the list af active preprocessors, releases all memory that the
preprocessor used up and frees the library.

The return value of the preprocessor functions should be zero or error code.

The return value of the function ipreproc_Process is zero or the error value of a
preprocessor. If a preprocessor returns a non-zero error code no further preprocessors are
invoked.

This function can not be used in situation when the preprocessors may return other
value in lCommand than PreprocessorDone or PreprocessorContinue.



Chapter 1: Introduction 37

1.5.8 Preprocessor function

This function has to be implemented in the external preprocessor and exported from the
DLL/SO file. It has to have the following prototype.

int DLL_EXPORT preproc(void *p, long *pFUN, void *q);

1.6 command.c

1.6.1 Header file for command building

This file contains macros that help the command implementators to write easy, readable
and compact code. The macros on one hand assume some variable naming, but on the
other hand hide some details of the function calls.

For examples how to use these macros see the files in the commands directory of the
source files. Note that some command implementation do not use these macros, because
they do sophisticated and low level operations that have to deal with the interpreted code
in more detail. However such a programming should not be neccesary to implement a new
command or function for extending the language.

To implement a new command or function do the following:
Read the definitions here.
Read the macros and see the implemented functions and commands in the directory
commands. Try to get some understanding how it works.
Take an already implemented function which is similar to the one that you want to
implement. Copy it to a new file, give it a new name.
Edit the syntax.def file to include the new command or file and run syntaxer.pl
syntax.def to generate the files syntax.h and syntax.def

Compile ScriptBasic to see that the function with the new name or the command has
the same functionality as the old one that you have copied.
Start modifying the code step by step. At each step compile the interpreter and check
that the modified functionality exists.
Debug, crosscheck the final code and document your new command or function for
your project.
Announce the new functionality in your project and be proud.
Be happy.

NOTE:

This file is actually a header file. This is maintained in command.c to avoid accidental
deletion of the command.h file. The file command.h is an intermediate file created from
command.c using the Perl utility headerer.pl. Because all *.h files are intermediate it
would have been dangerous to have command.h to be a source file.

The macros and types defined in this file:



38 ScriptBasic Source Files

1.6.2 Start a command implementation

COMMAND

This macro should be used to start a function that implements a command or built-in
function. This actually generates the function header with some local variable declarations
and some variable setting.

COMMAND(FUNCTIONNAME)

in the current implementation generates:

void COMMAND_FUNCTIONNAME(pExecuteObject pEo)
MortalList _ThisCommandMortals=NULL;
pMortalList _pThisCommandMortals = &_ThisCommandMortals;
unsigned long _ActualNode=PROGRAMCOUNTER;
int iErrorCode;

Note that further implemenation changes may change the actual code generated not
followed in this documentation. However the actual use of the macro should not change.

The function should be finished using the macro See 〈undefined〉 [END], page 〈undefined〉
documented also in this documentation.

1.6.3 Finish a command implementation

This macro generates the finishing code that a function impementing a BASIC command
or built-in function should have.

END

in the current implementation generates the following code:

goto _FunctionFinishLabel;
_FunctionFinishLabel:
memory_ReleaseMortals(pEo->pMo,&_ThisCommandMortals);
iErrorCode = 0;

Note that further implemenation changes may change the actual code generated not
followed in this documentation. However the actual use of the macro should not change.

Some part of the code may seem unneccesary. The goto just before the label, or the
final assignment to a local variable. These are present to avoid some compiler warning and
clever compilers should optimize out these constructs.

1.6.4 Implement a command that has identical functionality

This macro helps to implement a command that has identical functionality as another
command. You can see examples for it in the looping construct. There is a wide variety
of looping construct to implement all looping facilities that BASIC programmers got used
to. However the loop closing commands more or less behave the same. For example the
command next behaves exactly the same as the command while



Chapter 1: Introduction 39

Also note that the identical behaviour does not mean that one command can be used
instead of the other. There are conventions that the BASIC language requires and the
syntactical analyzer does nto allow to close a FOR loop using a WEND command.

To present an example on how to use this macro we have copied the code of the comman
NEXT:

COMMAND(NEXT)

IDENTICAL_COMMAND(WEND)

END

1.6.5 Use the mortals of the caller

USE_CALLER_MORTALS

You should use this macro when impementing a built-in function. The implementation
of the commands use their own mortal list to collect mortal variables storing intermediate
results. Built-in function implementations do NOT maintain their own collection of mortal
variables. This macro sets some variables to collect mortal variables into the list of the
calling modules.

To get a deeper understanding of mortals and variable handling see the documentation
for the source file memory.c

1.6.6 Return from the function

RETURN

When implementing a built-in function or command you should never ever return from
the function because that may avoid release of mortal variables and may not execute the
final code which is needed to properly finish the function. Use the macro RETURN instead.

1.6.7 Terminate a function with error

ERROR(x)

Use this macro to terminate the execution of a commans or built-in function with some
error. ERROR(0) means no error, but this construct is not advisable, use See 〈undefined〉
[RETURN], page 〈undefined〉 instead. Any other code value can be used to specify a special
error.

1.6.8 The value of the programcounter

PROGRAMCOUNTER

This macro results the node id of the command, which is currently executed. Note that
this is already the node that contains the command code and not the code that the class
variable ProgramCounter points. ProgramCounter points to a list node. This list node
points to the node returned by PROGRAMCOUNTER and to the next command node.



40 ScriptBasic Source Files

1.6.9 Implement jump instructions

SETPROGRAMCOUNTER(x)

Use this macro when a command decides that the code interpretation should continue at
a different location. The simplest example on how to use this macro is the implementation
of the command goto:

COMMAND(GOTO)

SETPROGRAMCOUNTER(PARAMETERNODE);

END

See also See 〈undefined〉 [PARAMETERNODE], page 〈undefined〉.

1.6.10 Get the next command parameter

NEXTPARAMETER

This macro should be used to get access to the next command parameter. This macro
should NOT be used in built-in function implemenation. The functions have only a single
parameter, which is indeed an expression list. To access the parameters of a function use
the macros See 〈undefined〉 [PARAMETERLIST], page 〈undefined〉, See 〈undefined〉 [CAR],
page 〈undefined〉 and See 〈undefined〉 [CDR], page 〈undefined〉.

When you implement a command you can get the first parameter of a command using
the macro PARAMETERNODE, PARAMETERLONG, PARAMETERDOUBLE or PARAMETERSTRING (see
See 〈undefined〉 [PARAMETERXXX], page 〈undefined〉). If the command has more than
one parameters you should use the macro NEXTPARAMETER to step to the next parameter.

1.6.11 Access a command parameter

PARAMETERNODE
PARAMETERLONG
PARAMETERDOUBLE
PARAMETERSTRING

You should use these macros to get access to the command parameters. Usually these
parameters are presented as "nodes". Syntax definition usually allows you to use expressions
whenever a long, double or string is expected. Expressions are converted to "nodes" and
therefore only a few commands may use the macros PARAMETERLONG, PARAMETERDOUBLE or
PARAMETERSTRING. These can be used when the parameter is a long number, double number
or a contant string and NOT an expression or expression list.

When a command has more than one parameters you can access each, step by step using
the macro See 〈undefined〉 [NEXTPARAMETER], page 〈undefined〉, which steps onto the
next parameter of the command.

Do NOT use any of the PARAMETERXXX macro or the macro See 〈undefined〉 [NEXTPA-
RAMETER], page 〈undefined〉 in the implementation of a built-in function.



Chapter 1: Introduction 41

1.6.12 Get the opcode of a node

OPCODE(x)

This macro results the opcode of the node x. This macro can rarely be used by your
extension.

1.6.13 Get the parameter list node for a function

PARAMETERLIST

You should use this macro to get the parameter list for a built-in function or operator.
Both built-in functions and operators get their parameter list as and expression list. This
macro gets the first list node of the expression list.

The parameter is presented as an expression list even if there is only a single parameter
for the function.

To access the parameters use the macros See 〈undefined〉 [CAR], page 〈undefined〉 and
See 〈undefined〉 [CDR], page 〈undefined〉.

1.6.14 Get the car node of a list node

Expression lists and commands are stored using list nodes. A list node has an See 〈un-
defined〉 [OPCODE], page 〈undefined〉 value eNTYPE_LST defined in expression.c, and has
two node pointers. One points to the node that belongs to the list member and other points
to the next list node.

If nItem is a list node for an expression list then CAR(nItem) is the root node of the
expression, and CDR(nItem) is the list node for the next expression. CAR(CDR(nItem)) is
the root node of the second expression.

The nodes are indexed with unsigned long values. NULL pointer is a 0L value and list
node lists are terminated with a node that has CDR(nItem)=0L.

See also See 〈undefined〉 [CDR], page 〈undefined〉.

1.6.15 Get the cdr node of a list node

Expression lists and commands are stored using list nodes. A list node has an See 〈un-
defined〉 [OPCODE], page 〈undefined〉 value eNTYPE_LST defined in expression.c, and has
two node pointers. One points to the node that belongs to the list member and other points
to the next list node.

If nItem is a list node for an expression list then CAR(nItem) is the root node of the
expression, and CDR(nItem) is the list node for the next expression. CAR(CDR(nItem)) is
the root node of the second expression.

The nodes are indexed with unsigned long values. NULL pointer is a 0L value and list
node lists are terminated with a node that has CDR(nItem)=0L.

See also See 〈undefined〉 [CAR], page 〈undefined〉.



42 ScriptBasic Source Files

1.6.16 Special variable to store the result

RESULT

Use this macro to store the result of the operation. Usually a new mortal value should
be allocated using See 〈undefined〉 [NEWMORTALXXX], page 〈undefined〉 and the appro-
priate value of RESULT should be then set.

See also See 〈undefined〉 [NEWMORTALXXX], page 〈undefined〉, See 〈undefined〉
[XXXVALUE], page 〈undefined〉

1.6.17 Access certain values of a memory object

STRINGVALUE(x)
LONGVALUE(x)
DOUBLEVALUE(x)

These macros are actually defined in memory.c, but we document them here because
they play an important role when writing implementation code for functions and operators.

These macros get the string (car*), long or double value of a variable. The macros can
also be used to assign value a long or double value to a variable. Do not forget to change the
type of the variable. You usually should call the macro See 〈undefined〉 [CONVERT2XXX],
page 〈undefined〉.

Note that you should NOT change the string value of a variable. The STRINGVALUE(x)
is a (char *) pointer to a string. You have to change the characters in this string, or you
should allocate a new string with longer or shorter length and copy the characters, but
never change the (char *) pointer.

1.6.18 Create a new mortal value

NEWMORTALLONG
NEWMORTALDOUBLE
NEWMORTALSTRING(length)

Use these macros to allocate a new mortal variable. In case of a string you have to give
the length of the string.

=center INCLUDE THE TERMINATING ZERO IN THE LENGTH!!! =nocenter
Never allocate non-mortal values when implemenating operators or functions.

1.6.19 Evaluate an expression

EVALUATEEXPRESSION(x)
_EVALUATEEXPRESSION(x)

Use these macros to evaluate an expression. The argument is the root node of the
expression. When a command has a parameter, which is an expression you should write:

VARIABLE Param;

Param = EVALUATEEXPRESSION(PARAMETERNODE);

Implementing a function or operator you should write



Chapter 1: Introduction 43

VARIABLE Param;

Param = EVALUATEEXPRESSION(CAR(PARAMETERLIST));

For further details see examples in the source files commands/let.c,
commands/mathops.c.

NOTE:

When an expression is evaluated the returned pointer points to a struct which contains
the value of the expression. This is usually a mortal variable which was created during
expression evaluation. However in some cases this pointer points to a nonmortal variable.
If the expression is a single global or local variable the result of the expression is the pointer
to the variable value.

This helps writing for more efficient code. On ther other hand operators tend to convert
the operands to long or double in case they expect a long or double but get a different
type. The conversions, or other manipulations then change the original variable value,
which is a side effect. For this reason the macro EVALUATEEXPRESSION also calls memory_
DupMortalize which creates a new variable, and copies the content of the variable passed
as argument if the variable is not a mortal.

_EVALUATEEXPRESSION does not do this and therefore you can use it for more efficient
memory handling avoiding the creation of unneccesary copies of variables.

If you are not sure whichone to use use the first one without the leading underscore.

1.6.20 Evaluate a left value

EVALUATELEFTVALUE(x)

Use this macro to evaluate a left value. This is done in the function commands/let.c
that implements the command LET. This command wasprogrammed with comments to
help the learning how this works.

1.6.21 Immortalize a variable

IMMORTALIZE(x)

Use this macro to immortalize a variable.You usually should avoid immortalizing values
when implementing operators of functions. Immortalize a value when it is assigned to a
variable.

1.6.22 Create a new immortal value

NEWLONG
NEWDOUBLE
NEWSTRING(length)

Use these macros to create a new long, double or string value. The created value is NOT
mortal. You usually should avoid this when implementing functions or operators. However
you may need in some command implementation.



44 ScriptBasic Source Files

1.6.23 Convert a value to other type

CONVERT2DOUBLE(x)
CONVERT2LONG(x)
CONVERT2STRING(x)

Use these macros to convert a value to long, double or string. The macros return the
pointer to the converted type. Note that conversion between long and double does not
generate a new value. In such a conversion the argument pointer is returned and the value
itself is converted from one type tp the other. This was programmed this way to avoid
unneccesary creation of mortal values. However be sure that either the argument is a
mortal value or you do not mind the conversion of the value and so the value of the variable
that the value was assigned to. You need not worry about this when you use the macro
EVALUATEEXPRESSION and not _EVALUATEEXPRESSION.

Also note that a conversion does not duplicate the value if the value already has the
desired type. In such a case the argument pointer is returned.

On the other hand there is no guarantee that the conversion is done in-place. When
conversion from string to anything else is done a new mortal variable is allocated and the
pointer to that value is returned.

1.6.24 Parameter pointer

PARAMPTR(x)
THISPARAMPTR

Each command may need some parameters that are persistent during a program execu-
tion. For example the file handling routines need an array that associates the opened file
handles with the integer values that the basic language uses. Each command may allocate
storage and assign a pointer to THISPARAMPTR to point to the allocated space. This is a
void pointer initialized to NULL.

A command may access a pointer of another command using the macro PARAMPTR(x)
supplying x as the command code. This is usually CMD_XXX with XXX the name of the
command, function or operator.

See also See 〈undefined〉 [ALLOC], page 〈undefined〉 and See 〈undefined〉 [FREE],
page 〈undefined〉

1.6.25 Allocate memory

The ALLOC and See 〈undefined〉 [FREE], page 〈undefined〉macros are provided to allocate
general memory. They are not intended to create new variable storage. For that purpose the
See 〈undefined〉 [NEWXXX], page 〈undefined〉 and See 〈undefined〉 [NEWMORTALXXX],
page 〈undefined〉 macros should be used.

The memory allocated should usually be assigned to the THISPARAMPTR pointer (see See
〈undefined〉 [PARAMPTR], page 〈undefined〉).

The macro ALLOC behaves similar to the system function malloc accepting the size of
the required memory in bytes and returning a void pointer.



Chapter 1: Introduction 45

The macro See 〈undefined〉 [FREE], page 〈undefined〉 accepts the pointer to the allocated
memory and returns nothing.

There is no need to release the allocated memory. The memory allocated using ALLOC
is automatically release upon program termination.

1.6.26 Release memory

The See 〈undefined〉 [ALLOC], page 〈undefined〉 and FREE macros are provided to al-
locate general memory. They are not intended to create new variable storage. For that
purpose the See 〈undefined〉 [NEWXXX], page 〈undefined〉 and See 〈undefined〉 [NEW-
MORTALXXX], page 〈undefined〉 macros should be used.

The memory allocated should usually be assigned to the THISPARAMPTR pointer (see See
〈undefined〉 [PARAMPTR], page 〈undefined〉).

The macro See 〈undefined〉 [ALLOC], page 〈undefined〉 behaves similar to the system
function malloc accepting the size of the required memory in bytes and returning a void
pointer.

The macro FREE accepts the pointer to the allocated memory and returns nothing.
There is no need to release the allocated memory. The memory allocated using See 〈un-

defined〉 [ALLOC], page 〈undefined〉 is automatically release upon program termination.

1.6.27 Decide if a string is integer or not

ISSTRINGINTEGER(x)

Use this macro to decide that a string contains integer value or not. This can beuseful
implementing operators that work with doubles as well as longs. When one of the operators
is a string hopefully containing the decimal form of a number you have to convert the string
to a long or double. This macro calls a function that decides whether the string contains
an integer number convertible to long or contains a double.

For an example how to use it see the source file commands/mathops.c

1.6.28 Basic C variable types to be used

NODE nNode;
VARIABLE Variable;
LEFTVALUE Lval;

These typedefs can be used to declare C variables that are to hold value associated with
nodes, variables (or values) and left values. For example how to use these typedefs see the
files commands/let.c, commands/mathops.c

1.6.29 Get the actual type of a value

TYPE(x)

Use this macro to access the type of a value. Values can hold long, double, string
or reference types. This macro returns the type of the value. For comparision use the
constants:



46 ScriptBasic Source Files

VTYPE_LONG long value
VTYPE_DOUBLE double value
VTYPE_STRING string value
VTYPE_REF reference value

1.7 lexer.c

This module contains the functions and structures that are used by ScriptBasic to per-
form lexical analysis of the source code. The module was originally developed for ScriptBasic
but was developed to be general enough to be used in other projects.

1.7.1 lex SymbolicName()

This function usually is for debug purposes. This searches the table of the predefined
symbols and returns the string which is the predefined symbols for which the code was
passsed.

char *lex_SymbolicName(pLexObject pLex,
long OpCode

);

1.7.2 lex HandleContinuationLines()

This function is called from the main function before syntax analysis is started. This
function handles the usual basic continuation lines. If the last character on a line is a
character, which is either recognised during lexical analysis as a character or as a symbol
then this lexical element and the following new-line character token is removed from the
list of tokens.

void lex_HandleContinuationLines(pLexObject pLex
);

1.7.3 lex RemoveSkipSymbols()

This function is called from See 〈undefined〉 [lex DoLexicalAnalysis()], page 〈undefined〉
to remove the lexical elements from the list of tokens that were denoted by the preprocessors
to be deleted.

Some lexical elements are used to give information to some of the preprocessors. These
tokens should be deleted, because later processing can not deal with them and confuses
syntax analysis.

In those cases the preprocessor should set the type of the token to be LLEX_T_SKIP or
LEX_T_SKIP_SYMBOL. The type LEX_T_SKIP should be used in case the token is handled
due to ProcessLexSymbol preprocessor command and LEX_T_SKIP otherwise.

When the type is set LEX_T_SKIP_SYMBOL the lexical analyzer knows to release the string
holding the symbol. If the type is LEX_T_SKIP only the token record is released.



Chapter 1: Introduction 47

If the symbol string is not released due to erroneously setting the type to LEX_T_SKIP
instead LEX_T_SKIP_SYMBOL the memory will not be released until the interpreter finishes
pre execution steps. So usually if you do not know how to set the type to skip a token
LEX_T_SKIP is safe.

void lex_RemoveSkipSymbols(pLexObject pLex
);

1.7.4 lex RemoveComments()

This function called from the function See 〈undefined〉 [lex DoLexicalAnalysis()],
page 〈undefined〉 function to remove the comments before the syntax analysis starts.

It should be called before calling the continuation line handling because usually REM
lines are not continuable

void lex_RemoveComments(pLexObject pLex
);

1.7.5 lex NextLexeme()

Use this function during iteration to get the next lexeme from the list of lexemes.

void lex_NextLexeme(pLexObject pLex
);

1.7.6 lex SavePosition()

Use this function to save the current position of the iteration. This is neccessary during
syntactical analysis to return to a certain position when syntactical analysis fails and the
program has to go back and try a different command syntax.

void lex_SavePosition(pLexObject pLex,
pLexeme *ppPosition

);

The second argument is a pLexeme * type variable that holds the position and should
be passed as argument to the function See 〈undefined〉 [lex RestorePosition()], page 〈unde-
fined〉.

1.7.7 lex RestorePosition()

Use this function to restore the lexeme position that was saved calling the function See
〈undefined〉 [lex SavePosition()], page 〈undefined〉

void lex_RestorePosition(pLexObject pLex,
pLexeme *ppPosition

);



48 ScriptBasic Source Files

1.7.8 lex StartIteration()

You should call this function when the list of lexemes was built up before starting the
iteration of the syntax analyzer. This function sets the iteration pointer to the first lexeme.

void lex_StartIteration(pLexObject pLex
);

1.7.9 lex EOF()

Call this function to check if the iteration has reached the last lexeme.

int lex_EOF(pLexObject pLex
);

1.7.10 lex Type()

During lexeme iteration this function can be used to retrieve the typeof the current
lexeme. The type of a lexeme can be:

LEX_T_DOUBLE a double value. A number which is not integer.
LEX_T_LONG an long value. A number which is integer.
LEX_T_STRING a string.
LEX_T_ASYMBOL an alpha symbol, like a variable. This symbol is not predefined. The
value of the lexeme is the string of the symbol.
LEX_T_NSYMBOL a predefined symbol. The actual value of the lexeme is the token value
of the symbol. If you wan to get the actual string of the symbol you have to call the
function See 〈undefined〉 [lex SymbolicName()], page 〈undefined〉.
LEX_T_CHARACTER A character that is not a predefined symbol and does not fit into
any string.
int lex_Type(pLexObject pLex
);

1.7.11 lex Double()

When the type of the current lexeme is LEX_T_DOUBLE during the lexeme iteration this
function should be used to retrieve the actual value of the current lexeme.

double lex_Double(pLexObject pLex

1.7.12 lex String()

When the type of the current lexeme is LEX_T_STRING during the lexeme iteration this
function should be used to retrieve the actual value of the current lexeme.

char *lex_String(pLexObject pLex
);



Chapter 1: Introduction 49

1.7.13 lex StrLen()

When the type of the current lexeme is LEX_T_STRING during the lexeme iteration this
function should be used to retrieve the length of the current lexeme. This is more accurate
than calling strlen on the actual string because the string itself may contain zero characters.

long lex_StrLen(pLexObject pLex
);

1.7.14 lex Long()

When the type of the current lexeme is LEX_T_LONG during the lexeme iteration this
function should be used to retrieve the actual value of the current lexeme.

long lex_Long(pLexObject pLex
);

1.7.15 lex LineNumber()

This function returns the line number that the actual lexeme is in the source file. This
function is needed to print out syntax and lexical error messages.

See also See 〈undefined〉 [lex FileName()], page 〈undefined〉.
long lex_LineNumber(pLexObject pLex
);

1.7.16 lex FileName()

This function returns a pointer to a constant string which is the file name that the lexeme
was read from. Use this function to print out error messages when syntax or lexical error
occures.

See also See 〈undefined〉 [lex LineNumber()], page 〈undefined〉.
char *lex_FileName(pLexObject pLex
);

1.7.17 lex XXX()

These access functions are implemented as macros and are put into <lexer.h> by the
program headerer.pl

The macros access Int, Symbol, Float etc values of the current lexeme. However these
are strored in a location which is named a bit different. For example the string of a symbol
is stored in the string field of the lexeme. To be readable and to be compatible with future
versions use these macros to access lexeme values when lexeme has any of these types.

/*
TO_HEADER:
#define lex_Int(x) lex_Long(x)
#define lex_Symbol(x) lex_String(x)



50 ScriptBasic Source Files

#define lex_Float(x) lex_Double(x)
#define lex_Char(x) lex_Long(x)
#define lex_Token(x) lex_Long(x)
#define lex_Code(x) lex_Long(x)
*/
/*

1.7.18 lex Finish()

Call this functionto release all memory allocated by the lexical analyzer.

void lex_Finish(pLexObject pLex
);

1.7.19 lex DumpLexemes()

Us this function for debugging. This function dumps the list of lexemes to the file
psDump.

void lex_DumpLexemes(pLexObject pLex,
FILE *psDump

);

1.7.20 lex ReadInput()

Call this function after proper initialization to read the input file. This function performs
the laxical analysis and builds up an internal linked list that contains the lexemes.

int lex_ReadInput(pLexObject pLex
);

1.7.21 lex InitStructure()

You may but need not call this function to initialize a LexObject. You may also call
this function to use the settings of the function and set some variables to different values
after the function returns.

void lex_InitStructure(pLexObject pLex
);

1.8 expression.c

The functions in this file compile a ScriptBasic expression into internal form. The func-
tions are quite general, and do NOT depend on the actual operators that are implemented
in the actual version.

This means that you can define extra operators as well as extra built-in functions easily
adding entries into tables and need not modify the compiling code.



Chapter 1: Introduction 51

1.8.1 What is an expression in ScriptBasic

Altough the syntax defintion in script basic is table driven and can easily be modified
expressions are not. The syntax of an expression is somewhat fix. Here we formally define
what the program thinks to be an expression. This restriction should not cause problem
in the usage of this module because this is the usual syntax of an expression. Any altering
to this would result in an expression syntax which is unusual, and therefore difficult to use
for the common users. The operators and functions along with therir precedence values are
defined in tables anyway, so you have flexibility.

The formal description of an expression syntax:

tag ::= UNOP tag
NUMBER
STRING
’(’ expression ’)’
VARIABLE ’[’ expression_list ’]’
VARIABLE ’’ expression_list ’’
FUNC ’(’ expression_list ’)’
.

expression_list ::= expression [ ’,’ expression_list ] .

expression_i(1) ::= tag .

expression_i(i) := expression_i(i-1) [ OP(i) expression_i(i) ] .

expression ::= expression_i(MAX_PREC) .

left_value ::= variable ’[’ expression_list ’]’
variable ’’ expression_list ’’ .

UNOP

is unary operator as defined in tables in file operators.h

NUMBER

is a number, lexical element.

STRING

is a string, lexical element.

VARIABLE

is a lexical element.

FUNC

is a function either built in, or user defined

OP(i)

is an operator of precendece i as defined in tables.



52 ScriptBasic Source Files

1.8.2 ex DumpVariables()

This function dumps the variables stored in the symbol table to the file pointed by fp

void ex_DumpVariables(SymbolTable q,
FILE *fp

);

Note that this function is a debug function.

1.8.3 expression PushNameSpace()

When a module name instruction is encountered the name space is modified. However
the old name space should be reset when an end module statement is reached. As the
modules can be nested into each other the name spaces are stored in a name space stack
during syntax analysis.

This function pushes the current name space onto the stack. After calling this function
the caller can put the new string into the pEx->CurrentNameSpace variable and later calling
See 〈undefined〉 [ex PopNameSpace()], page 〈undefined〉 can be called to retrive the saved
name space.

int expression_PushNameSpace(peXobject pEx
);

1.8.4 ex CheckUndefinedLabels()

This function traverses the label symbol table and reports all undefined labels as error.
Undefined labels reference the node with node-number zero. Jumping on a label like that
caused the program to stop instead of compile time error in previous versions.

void ex_CheckUndefinedLabels(peXobject pEx
);

1.8.5 ex CleanNameSpaceStack()

This function cleans the name space stack. This cleaning does not need to be done
during syntax analysis. It is needed after the analysis has been done to detect unclosed
modules.

Note that the main:: module is implicit and can not and should not be closed unless it
was explicitly opened.

The function calls the report function if the name space is not empty when the function
is called.

void ex_CleanNameSpaceStack(peXobject pEx
);



Chapter 1: Introduction 53

1.8.6 expression PopNameSpace()

When a module name instruction is encountered the name space is modified. However
the old name space should be reset when an end module statement is reached. As the
modules can be nested into each other the name spaces are stored in a name space stack
during syntax analysis.

This function pops the name space from the name space stack and copies the value to the
pEx->CurrentNameSpace variable. This should be executed when a name space is closed
and we want to return to the embedding name space.

int expression_PopNameSpace(peXobject pEx
);

1.8.7 ex PushWaitingLabel()

This function is used to define a label.
int ex_PushWaitingLabel(peXobject pEx,

pSymbolLABEL pLbl
);

When a label is defined the eNode_l that the label is going to belong still does not
exists, and therefore the NodeId of that eNode_l is not known. This function together with
See 〈undefined〉 [ex PopWaitingLabel()], page 〈undefined〉 maintains a stack that can store
labels which are currently defined and still need a line to be assigned to them. These labels
all point to the same line. Altough it is very rare that many labels point to the same line,
it is possible. The number of labels that can point the same line is defined by the constant
MAX_SAME_LABELS defined in expression.c

To make it clear see the following BASIC code:

this_is_a_label:
REM this is a comment

PRINT "hello word!!"

The label is defined on the first line of the example. However the label belongs to
the third line containing the statement PRINT. When the label is processed the compiler
does not know the node number of the code segment which is generated from the third
line. Therefore this function maintains a label-stack to store all labels that need a line.
Whenever a line is compiled so that a label can be assigned to that very line the stack is
emptied and all labels waiting on the stack are assigned to the line just built up. (Or the
line is assigned to the labels if you like the sentence the other way around.)

Note that not only labels given by a label defining statement are pushed on this stack,
but also labels generated by commands like ’while/wend’ of ’if/else/endif’.

1.8.8 ex PopWaitingLabel()

This function is used to get a label out of the waiting-label-stack.



54 ScriptBasic Source Files

pSymbolLABEL ex_PopWaitingLabel(peXobject pEx
);

To get some description of waiting labels see the description of the function See 〈unde-
fined〉 [ex PushWaitingLabel()], page 〈undefined〉.

1.8.9 ex PushLabel()

This function is used to push an unnamed label on the compile time stack. For more
detailed defintion of the unnamed labels and this stack see the documentation of the function
See 〈undefined〉 [ex PopLabel()], page 〈undefined〉.

int _ex_PushLabel(peXobject pEx,
pSymbolLABEL pLbl,
long Type,
void *pMemorySegment

);

The argument Type is used to define the type of the unnamed label. This is usually
defined in the table created by the program syntaxer.pl

=bold Do NOT get confused! This stack is NOT the same as the waiting label stack.
That is usually for named labels. =nobold

However the non-named labels are also pushed on that stack before they get value.

1.8.10 ex PopLabel()

This function is used to pop an unnamed label off the compile stack.

When a construct, like IF/ELSE/ENDIF or REPEAT/UNTIL or WHILE/WEND is created it is
defined using compile time label stack.

For example analyzing the instruction WHILE pushes a "go forward" value on the compile
time label stack. When the instruction WEND is analyzed it pops off the value and stores
NodeId for the label. The label itself is not present in the global label symbol table, because
it is an unnamed label and is referenced during compile time by the pointer to the label
structure.

The value of the AcceptedType ensures that a WEND for example do not matches an IF.

pSymbolLABEL _ex_PopLabel(peXobject pEx,
long *pAcceptedType

);

The array pAcceptedType is an array of long values that have MAX_GO_CONSTANTS val-
ues. This is usually points to a static table element which is generated by the program
syntaxer.pl.

=bold Do NOT get confused! This stack is NOT the same as the waiting label stack.
That is for named labels. =nobold



Chapter 1: Introduction 55

1.8.11 ex CleanLabelStack()

This function is used to clean the unnamed label stack whenever a locality is left. This
helps to detect when an instruction like FOR or WHILE is not closed within a function.

void _ex_CleanLabelStack(peXobject pEx
);

1.8.12 Some NOTE on SymbolXXX functions

The functions named SymbolXXX like SymbolLABEL, or SymbolUF do NOT store the
names of the symbols. They are named SymbolXXX because they are natural extensions of
the symbol table system. In other compilers the functionality to retrieve the arguments of
a symbol is part of the symbol table handling routines.

In script basic the symbol table handling routines were developed to be general purpose.
Therefore all the arguments the symbol table functions bind toa symbol is a void * pointer.
This pointer points to a struct that holds the arguments of the symbols, and the functions
SymbolXXX allocate the storage for the arguments.

This way it is possible to allocate arguments for non-existing symbols, as it is done
for labels. Script basic uses non-named labels to arrange the "jump" instructions for
IF/ELSE/ENDIF constructs. (And for some other constructs as well.) The label and jump
constructs look like:

IF expression Then

ELSE
label1:

END IF
label2:

The labels label1 and label2 do not have names in the system, not even autogenerated
names. They are referenced via pointers and their value (the NodeId of the instruction) get
into the SymbolLABEL structure and later int o the cNODE during build.

1.8.13 new SymbolLABEL()

This function should be used to create a new label. The label can be named or unnamed.
Note that this structure does NOT contain the name of the label.

pSymbolLABEL _new_SymbolLABEL(peXobject pEx
);

Also note that all labels are global in a basic program and are subject to name space
decoration. However the same named label can not be used in two different functions in
the same name space.



56 ScriptBasic Source Files

A label has a serial value, which is not actually used and a number of the node that it
points to.

See the comments on See 〈undefined〉 [ex symbols()], page 〈undefined〉.

1.8.14 new SymbolVAR()

This function should be used to create a new variable during compile time. A variable
is nothing else than a serial number. This serial number starts from 1.

pSymbolVAR _new_SymbolVAR(peXobject pEx,
int iLocal

);

The second argument should be true for local variables. The counting of local variables
are reset whenever the program enters a new locality. Localities can not be nested.

Also note that local variables are allocated in a different segment because they are
deallocated whenever the syntax analyzer leaves a locality.

1.8.15 new SymbolUF()

This function should be used to create a new user defined function symbol.
pSymbolUF _new_SymbolUF(peXobject pEx
);

A user function is defined by its serial number (serial number is actually not used in the
current sytsem) and by the node number where the function actually starts.

The number of arguments and the number of local variables are defined in the generated
command and not in the symbol table. This way these numbers are available as they should
be during run time.

1.8.16 new eNODE()

This function should be used to create a new eNODE.
peNODE _new_eNODE(peXobject pEx
);

Each eNODE and eNODE_l structure has a serial number. The eNODEs are referencing each
other using pointers. However after build these pointers become integer numbers that refer
to the ordinal number of the node. Nodes are stored in a single memory block after they
are packed during build.

An eNODE is a structure that stores a unit of compiled code. For example an addition
in an expression is stored in an eNODE containing the code for the addition operator and
containing pointers to the operands.

1.8.17 new eNODE l()

This function should be used to create a new eNODE list. This is nothing else than a
simple structure having two pointers. One pointer points to an eNODE while the other points
to the next eNODE_l struct or to NULL if the current eNODE_l is the last of a list.



Chapter 1: Introduction 57

peNODE_l _new_eNODE_l(peXobject pEx,
char *pszFileName,
long lLineNumber

);

Note that eNODE and eNODE_l are converted to the same type of structure during build
after the syntactical analysis is done.

1.8.18 ex free()

This function releases all memory that was allocated during syntax analysis.
void ex_free(peXobject pEx
);

1.8.19 ex init()

This function should be called before starting syntactical analysis. This function
positions the lexeme pointer to the first lexeme,
initializes the memory segments needed for structured memory allocation,
created the symbol tables
initializes ’class’ variables
initializes the name space to be main::

int ex_init(peXobject pEx
);

1.8.20 ex CleanNamePath()

This function created a normalized name space name from a non normalized. This is a
simple string operation.

Think of name space as directories and variables as files. A simple variable name is in
the current name space. If there is a ’path’ before the variable or function name the path
has to be used. This path can either be relative or absolute.

File system:
../ is used to denote the parent directory in file systems.
Name space:
_:: is used to denote the parent name space.
File system:
mydir/../yourdir is the same as yourdir
Name space:
myns::_::yourns is the same as yourns
This function removes the unneccesary downs and ups from the name space and creates

the result in the same buffer as the original. This can always be done as the result is always
shorter. (Well, not longer.)

void ex_CleanNamePath(char *s
);



58 ScriptBasic Source Files

1.8.21 ex ConvertName()

Use this function to convert a relative name to absolute containing name space.

This function checks if the variable or function name is relative or absolute. If the name
is relative it creates the absolute name using the current name space as a base.

The result is always put into the Buffer.

A name is relative if it does NOT contain :: at all (implicit relative), if it starts with
:: or is it starts with _:: (explicit relative).

int ex_ConvertName(char *s, /* name to convert */
char *Buffer, /* buffer to store the result */
size_t cbBuffer, /* size of the buffer */
peXobject pEx /* current expression object */

);

The error value is EX_ERROR_SUCCESS (zero) menaing succesful conversion or EX_ERROR_
TOO_LONG_VARIABLE meaning that the variable is too long for the buffer.

Note that the buffer is allocated in See 〈undefined〉 [ex init()], page 〈undefined〉 according
to the size value given in the class variable cbBuffer, which should be set by the main
function calling syntax analysis.

1.8.22 ex IsBFun()

This function checks if the current lexeme is a built-in function and returns pointer to
the function in the table BuiltInFunctions or returns NULL if the symbol is not a built-in
function.

pBFun ex_IsBFun(peXobject pEx
);

1.8.23 ex IsUnop()

This function checks if the current lexeme is an unary operator and returns the op code
or zero if the lexem is not an unary operator.

unsigned long ex_IsUnop(peXobject pEx
);

1.8.24 ex IsBinop()

This function checks if the current lexeme is a binary operator of the given precedence
and returns the op code or zero.

unsigned long ex_IsBinop(peXobject pEx,
unsigned long precedence

);



Chapter 1: Introduction 59

1.8.25 ex LeftValueList()

This function works up a leftvalue_list pseudo terminal and creates the nodes for it.

peNODE_l ex_LeftValueList(peXobject pEx
);

1.8.26 ex ExpressionList()

This function works up an expression_list pseudo terminal and creates the nodes for
it.

peNODE_l ex_ExpressionList(peXobject pEx
);

1.8.27 ex Local()

This function work up a local pseudo terminal. This does not create any node.

int ex_Local(peXobject pEx
);

The return value is 0 if no error happens.

1 means sytax error (the coming token is not a symbol)

2 means that there is no local environment (aka. the local var is not inside a function)

1.8.28 ex LocalList()

This function work up a local_list pseudo terminal. This does not generate any node.

int ex_LocalList(peXobject pEx
);

The return value is 0 if no error happens.

1 means sytax error (the coming token is not a symbol)

2 means that there is no local environment (aka. the local var is not inside a function)

1.8.29 ex Global()

This function work up a global pseudo terminal. This does not create any node.

int ex_Global(peXobject pEx
);

The return value is 0 if no error happens or the error is semantic and was reported
(global variable redefinition).

1 means syntax error (the coming token is not a symbol)



60 ScriptBasic Source Files

1.8.30 ex GlobalList()

This function work up a global_list pseudo terminal. This does not generate any
node.

int ex_GlobalList(peXobject pEx
);

The return value is 0 if no error happens.
1 means sytax error (the coming token is not a symbol)
2 means the variable was already defined

1.8.31 ex LookupUserFunction()

This function searches a user defined function and returns a pointer to the symbol table
entry. If the second argument iInsert is true the symbol is inserted into the table and an
undefined function is created. This is the case when a function is used before declared. If
the argument iInsert is fales NULL is returned if the function is not yet defined.

void **ex_LookupUserFunction(peXobject pEx,
int iInsert

);

1.8.32 ex LookupGlobalVariable

This function searches the global variable symbol table to find the global variable with
the name stored in TpEx->Buffer. If the variable was not declared then this function inserts
the variable into the symbol table if the argument iInsert is true, but nothing more: the
symbol table entry remains NULL.

void **ex_LookupGlobalVariable(peXobject pEx,
int iInsert

);

The function returns pointer to the pointer stored in the symbol table associated with
the global variable.

1.8.33 ex LookupLocallyDeclaredGlobalVariable

This function searches the global variable symbol table to find the global variable with
the name stored in TpEx->Buffer. If the variable was not declared then this function return
NULL. Othervise it returns a pointer to a void * pointer, which is NULL.

Note that this table is allocated when the program starts a sub or function (aka. when
we go local) and is used to register, which variables did the program declare as global
variables inside the subroutine. There is no any value associated with the symbols in this
table, as the symbols are also inserted into the global symbol table which serves the purpose.

void **ex_LookupLocallyDeclaredGlobalVariable(peXobject pEx
);

The function returns pointer to the pointer stored in the symbol table associated with
the global variable or NULL.



Chapter 1: Introduction 61

1.8.34 ex LookupLocalVariable

This function searches the local variable symbol table to find the local variable with the
name stored in TpEx->Buffer. If the variable was not declared and the argument iInsert
is true then then this function inserts the variable into the symbol table, but nothing more:
the symbol table entry remains NULL.

void **ex_LookupLocalVariable(peXobject pEx,
int iInsert

);

The function returns pointer to the pointer stored in the symbol table associated with
the global variable.

1.8.35 ex Tag

This function implements the syntax analysis for the lowest syntax elements of an ex-
pression. This function is called when syntax analysis believes that a TAG has to be worked
up in an expression. A tag is defined formally as

tag ::= UNOP tag
BUN ’(’ expression_list ’)’
NUMBER
STRING
’(’ expression ’)’
VARIABLE ’[’ expression_list ’]’
VARIABLE ’’ expression_list ’’
FUNC ’(’ expression_list ’)’

.

peNODE ex_Tag(peXobject pEx
);

The function returns pointer to the new node.

1.8.36 ex Expression i

This function is called to analyze a sub-expression that has no lower precedence operators
than i (unless enclosed in parentheses inside the sub expression).

If the argument variable i is 1 then this function simply calls See 〈undefined〉 [ex Tag],
page 〈undefined〉. Otherwise it calls itself recursively twice with optionally compiling the
operator between the two subexpressions.

peNODE ex_Expression_i(peXobject pEx,
int i

);

The function returns pointer to the new node.



62 ScriptBasic Source Files

1.8.37 ex Expression r

This function implements the syntax analysis for an expression. This is quite simple. It
only calls See 〈undefined〉 [ex Expression i], page 〈undefined〉 to handle the lower precendece
expression.

void ex_Expression_r(peXobject pEx,
peNODE *Result

);

1.8.38 ex IsSymbolValidLval(pEx)

This function checks whether the actual symbol used in as a start symbol of a left value
is defined as a CONST in the BASIC program or not. If this is a const then the syntax
analizer has to report an error (since v1.0b31).

This function is called from the function See 〈undefined〉 [ex LeftValue], page 〈undefined〉
after the symbol was name space corrected.

Note that a symbol can be a global, name space independant constant, a name space
local constant and a function local constant. All these differ only in name decoration inside
the interpreter.

If a symbol is a local variable but is also a module or global symbol, but is NOT
a function local symbol then that variable can indeed stand on the left side of a LET
command. Therefore we check if the symbol is in the local variables table and in case this
is in some of the global or module contant table, we just do not care.

int ex_IsSymbolValidLval(peXobject pEx
);

The function returns 1 if the symbol is a constant or zero if not.

1.8.39 ex LeftValue

This function implements the syntax analisys for a left value.

peNODE ex_LeftValue(peXobject pEx
);

The function returns pointer to the new node.

1.8.40 ex PredeclareGlobalLongConst()

This function is used to declare the global constants that are given in the syntax definti-
non, and should be defined before the program is started to be analized.

int ex_PredeclareGlobalLongConst(peXobject pEx,
char *pszConstName,
long lConstValue

);



Chapter 1: Introduction 63

1.8.41 ex IsCommandThis

This is the most general syntax analysis function that tries to match the syntax of the
actual line syntax provided in argument p against the token list at the actual position.

The function has several side effects altering optionally the global and local variable
table, define user defined functions and so on.

The function signals the success of its operation via the argument piFailure setting the
int pointed by it to be zero or the error code.

If the syntax does not match the token list then the function cleans up all its actions if
possible to allow the caller to iterate over to the next syntax defintion. In such a situation
*piFailure is set EX_ERROR_SYNTAX

If the syntax does not match the token list but the analysis went too far and had side
effects that cannot be reversed then no cleanup is made. In such a situation *piFailure is
set EX_ERROR_SYNTAX_FATAL.

*piFailure is also set to this value if the syntax definition reaches a "star" point. If
the syntax analysis matches a line up to a "star" point then the line should match that
syntax definition or is known erroneous. For example a command starting with the two
keywords ’declare’ ’command’ after these two keywords reach a "star" point because no
other line syntax but extrenal command declaration starts with these two keywords. In
such a situation signalling fatal syntax error saves the compiler time to check other syntax
definition.

A "star" point is named this way, because the file syntax.def uses the character * to
denote this point in the syntax definitions.

peNODE ex_IsCommandThis(peXobject pEx,
pLineSyntax p,
int *piFailure

);

If the syntax analysis fully matches the syntax definition provided in the argument then
the function returns the node that was generated. If more then one nodes were generated
during the syntax analysis of the line then the root node of the generated nodes is returned.

1.8.42 ex Command r()

This function finds the matching sytax line for the actual line in a loop. It starts with
the first syntax definition and goes on until there are no more syntax defintions, a fatal
error has happened or the actual line is matched.

void ex_Command_r(peXobject pEx,
peNODE *Result,
int *piFailure

);

pEx is the execution object.

Result is the resulting node.

piFailure is the error code.



64 ScriptBasic Source Files

1.8.43 ex Command l()

This function goes over the source lines and performs the syntax analysis. This function
calls the function See 〈undefined〉 [ex Command r()], page 〈undefined〉. When that function
returns it allocated the list nodes that chain up the individual lines. It also defines the labels
that are waiting to be defined.

int ex_Command_l(peXobject pEx,
peNODE_l *Result

);

When all the lines are done this function cleans the name space stack, check for undefined
labels that remained undefined still the end of the source file.

1.8.44 ex Pragma

This function implements the compiler directive "declare option".
When the compiler finds a "declare option" directive it calls this function. The first

argument is the compiler class pointer. The second argument points to a constant string
containing the option.

The function implements the internal settings of the compiler options reflecting the pro-
grammer needs expressed by the option. For example DeclareVars will require all variables
declared to be either global or local.

If the programmer specified an option, which is not implemented the error reporting
function is called.

int ex_Pragma(peXobject pEx,
char *pszPragma

);

The function returns 0 when the option was processed, and 1 when not implemented
option was supplied as argument.

1.8.45 ex IsCommandCALL()

Because the syntax of a call statement is very special here is a special function to analyze
the CALL statement.

A call statement is a keyword CALL followed by a function call.
If the function or sub is already defined then the keyword CALL can be missing.
When the function or sub is called this way and not inseide an expression the enclosing

parentheses can be missing.
peNODE ex_IsCommandCALL(peXobject pEx,

pLineSyntax p,
int *piFailure

);

To get some description of waiting labels see the description of the function See 〈unde-
fined〉 [ex PushWaitingLabel()], page 〈undefined〉.



Chapter 1: Introduction 65

1.8.46 ex IsCommandOPEN()

The open statement is a simple one. The only problem is that the last parameter defining
the length of a record is optional. This can only be handled using a separate function

peNODE ex_IsCommandOPEN(peXobject pEx,
pLineSyntax p,
int *piFailure

);

’open’ expression ’for’ absolute symbol ’as’ expression ’len’ ’=’ expression nl

1.8.47 ex IsCommandSLIF()

If syntax analysis gets to calling this function the command is surely not single line if,
because the command SLIF is recognised by IsCommandIF.

The syntax of the command IF is presented in the syntax table before SLIF and therefore
if the syntax analyser gets here it can not be SLIF.

The original function IsCommandThis could also do failing automatically, but it is simpler
just to fail after the function call, so this function is just a bit of speedup.

peNODE ex_IsCommandSLIF(peXobject pEx,
pLineSyntax p,
int *piFailure

);

1.8.48 ex IsCommandIF()

The statement IF is quite simple. However there is another command that has almost
the same syntax as the IF statement. This is the SLIF, single line IF.

The difference between the command IF and SLIF is that SLIF does not have the new
line character after the keyword THEN.

peNODE ex_IsCommandIF(peXobject pEx,
pLineSyntax p,
int *piFailure

);

IF/IF: ’if’ * expression ’then’ go forward(IF) nl SLIF/SLIF: ’slif’ * expression ’then’

1.8.49 ex IsCommandLET()

peNODE ex_IsCommandLET(peXobject pEx,
pLineSyntax p,
int *piFailure

);



66 ScriptBasic Source Files

1.9 builder.c

This module can and should be used to create the memory image for the executor module
from the memory structure that was created by the module expression.

The memory structure created by expression is segmented, allocated in many separate
memory chunks. When the module expression has been finished the size of the memory
is known. This builder creates a single memory chunk containing all the program code.

Note that the function names all start with the prefix build_ in this module.

The first argument to each function is a pointer to a BuildObject structure that contains
the "global" variables for the module. This technique is used to ensure multithread usage.
There are no global variables which are really global within the process.

The functions in this module are:

=toc

1.9.1 The structure of the string table

The string table contains all string contansts that are used in the program. This includes
the single and multi line strings as well as symbols. (note that even the variable name after
the keyword next is ignored but stored in the string table).

The strings in the string table are stored one after the other zero character terminated.
Older version of ScriptBasic v1.0b21 and before stored string constants zero character ter-
minated. Because of this string constants containing zero character were truncated (note
that \000 creates a zero character in a string constant in ScriptBasic).

The version v1.0b22 changed the way string constants are stored and the way string
table contains the strings. Each string is stored with its length. The length is stored as a
long on sizeof(long) bytes. This is followed by the string. Whenever the code refers to
a string the byte offset of the first character of the string is stored in the built code. For
example the very first string starts on the 4. byte on 32 bit machines.

Altough the string length and zero terminating characters are redundant information
both are stored to avoid higher level mistakes causing problem.

1.9.2 build AllocateStringTable()

This function allocates space for the string table. The size of the string table is already
determined during syntax analysis. The determined size should be enough. In some cases
when there are repeated string constants the calculated sizte is bigger than the real one. In
that case the larger memory is allocated and used, but only the really used part is written
to the cache file.

If the program does not use any string constants then a dummy string table of length
one byte is allocated.

void build_AllocateStringTable(pBuildObject pBuild,
int *piFailure

);



Chapter 1: Introduction 67

The first argument is the usual pointer to the "class" structure. The second argument
is the result value. It can have two values:

BU_ERROR_SUCCESS which is guaranteed zero, means the function was successful.
BU_ERROR_MEMORY_LOW means the memory allocation function could not allocate the
neccessary memory

The string table is allocated using the function alloc_Alloc. The string table is pointed
by the class variable StringTable. The size of the table is stored in cStringTable

1.9.3 build StringIndex()

In the built code all the strings are references using the offset of the string from the string
table (See See 〈undefined〉 [build AllocateStringTable()], page 〈undefined〉). This function
calculates this value for the string.

This function is used repetitively during the code building. Whenever a string index is
sought that is not in the string table yet the string is put into the table and the index is
returned.

If there is not enough space in the string table the function calls the system function
exit and stops the process. This is rude especially in a multithread application but it
should not ever happen. If this happens then it is a serious internal error.

unsigned long build_StringIndex(pBuildObject pBuild,
char *s,
long sLen

);

1.9.4 build Build l()

This function converts an eNODE_l list to cNODE list in a loop. This function is
called from See 〈undefined〉 [build Build()], page 〈undefined〉 and from See 〈undefined〉
[build Build r()], page 〈undefined〉.

int build_Build_l(pBuildObject pBuild,
peNODE_l Result

);

The function returns the error code, or zero in case of success.

1.9.5 build Build r()

This function builds a single node. This actually means copiing the values from the data
structure created by the module expression. The major difference is that the pointers of
the original structure are converted to unsigned long. Whenever a pointer pointed to a
eNODE the unsigned long will contain the NodeId of the node. This ID is the same for the
eNODE and for the cNODE that is built from the eNODE.

int build_Build_r(pBuildObject pBuild,
peNODE Result

);



68 ScriptBasic Source Files

The node to be converted is passed by the pointer Result. The return value is the error
code. It is zero (BU_ERRROR_SUCCESS) in case of success.

When the node pointed by Result references other nodes the function recursively calls
itself to convert the referenced nodes.

1.9.6 build Build()

This is the main entry function for this module. This function initializes the class variable
pointed by pBuild and calls See 〈undefined〉 [build Build l()], page 〈undefined〉 to build up
the command list.

int build_Build(pBuildObject pBuild
);

1.9.7 build MagicCode()

This is a simple and magical calculation that converts any ascii date to a single unsigned
long. This is used as a magic value in the binary format of the compiled basic code to help
distinguish incompatible versions.

This function also fills in the sVersion static struct that contains the version info.
unsigned long build_MagicCode(pVersionInfo p
);

1.9.8 build SaveCCode()

This function saves the binary code of the program into the file given by the name
szFileName in C programming language format.

The saved file can be compiled using a C compiler on the platform it was saved. The
generated C file is not portable.

void build_SaveCCode(pBuildObject pBuild,
char *szFileName

);

1.9.9 build SaveCorePart()

This function saves the binary content of the compiled file into an already opened file.
This is called from both build_SaveCode and from build_SaveECode.

Arguments:
pBuild is the build object
fp is the FILE * file pointer to an already binary write opened ("wb") file.

The file fp is not closed even if error occures while writing the file.
int build_SaveCorePart(pBuildObject pBuild,

FILE *fp,
unsigned long fFlag



Chapter 1: Introduction 69

);

The function returns BU_ERROR_SUCCESS (zero) if there was no error or BU_ERROR_FAIL
if the function fails writing the file.

1.9.10 build SaveCore()

This function saves the binary content of the compiled file into an already opened file.
This is called from both build_SaveCode and from build_SaveECode.

Arguments:
pBuild is the build object
fp is the FILE * file pointer to an already binary write opened ("wb") file.

The file fp is not closed even if error occures while writing the file.
int build_SaveCore(pBuildObject pBuild,

FILE *fp
);

The function returns BU_ERROR_SUCCESS (zero) if there was no error or BU_ERROR_FAIL
if the function fails writing the file.

1.9.11 build SaveCode()

This function saves the binary code of the program into the file given by the name
szFileName.

This version is hard wired saving the code into an operating system file because it uses
fopen, fclose and fwrite. Later versions may use other compatible functions passed
as argument and thus allowing output redirection to other storage media (a database for
example).

However I think that this code is quite simple and therefore it is easier to rewrite the
whole function along with See 〈undefined〉 [build LoadCode()], page 〈undefined〉 for other
storage media than writing an interface function.

The saved binary code is NOT portable. It saves the internal values as memory image
to the disk. It means that the size of the code depends on the actual size of long, char, int
and other types. The byte ordering is also system dependant.

The saved binary code can only be loaded with the same version, and build of the
program, therefore it is vital to distinguish each compilation of the program. To help the
recognition of the different versions, the code starts with a version structure.

The very first byte of the code contains the size of the long on the target machine.
If this is not correct then the code was created on a different processor and the code is
incompatible.

The version info structure has the following fileds:
MagicCode is a magic constant. This contains the characters BAS and a character 1A
that stops output to screen on DOS operating systems.
VersionHigh The high part of the version of the STANDARD version.
VersionLow The low part of the version of the STANDARD version.



70 ScriptBasic Source Files

MyVersionHigh The high part of the version of the variation. This is always zero for
the STANDARD version.
MyVersionLow The low part of the version of the variation. This is always zero for the
STANDARD version.
Build A build code which is automatically calculated from the compilation date.
Variation 8 characters (NOT ZERO TERMINATED!) naming the version "STAN-
DARD" for the STANDARD version (obvious?)
int build_SaveCode(pBuildObject pBuild,

char *szFileName
);

The function returns zero on success (BU_ERROR_SUCCESS) and BU_ERROR_FAIL if the
code could not be saved.

1.9.12 build SaveECode()

This function saves the binary code of the program into the file given by the name
szFileName in exe format.

This is actually nothing but the copy of the original interpreter file and the binary code
of the BASIC program appended to it and some extra information at the end of the file to
help the reader to find the start of the binary BASIC program when it tries to read the exe
file.

void build_SaveECode(pBuildObject pBuild,
char *pszInterpreter,
char *szFileName

);

1.9.13 build GetExeCodeOffset()

This function checks that the actually running exe contains the binary BASIC program
attached to its end. It returns zero if not, otherwise it returns 1.

The argument pszInterpreter should be argv[0] thus the code can open the exe-
cutable file and check if it really contains the BASIC code
plOffset should point to a long variable ready to recieve the file offset where the
BASIC code starts
plEOFfset should point to a long variable ready to receive the file offset where the
BASIC code finishes. This is the position of the last byte belonging to the BASIC
code, thus if ftell(fp) > *plEOFfset means the file pointer is after the code and
should treat it as EOF condition when reading the BASIC program code.

It is guaranteed that both *plOffset and *plEOFfset will be set to 0 (zero) if the file
proves to be a standard BASIC interpreter without appended BASIC code.

int build_GetExeCodeOffset(char *pszInterpreter,
long *plOffset,
long *plEOFfset

);



Chapter 1: Introduction 71

1.9.14 build LoadCore()

This function loads the binary code from an opened file.
Arguments:
pBuild is the build object
szFileName is the name of the file that is opened. Needed for reporting purposes.
fp opened FILE * file pointer opened for binary reading (aka "rb"), and positioned
where the BASIC code starts.
lEOFfset should be the position of the last byte that belongs to the BASIC code so
that ftell(fp)>lEOFfset is treated as EOF condition. If this value is zero that means
that the BASIC code is contained in the file until the physical end of file.
void build_LoadCore(pBuildObject pBuild,

char *szFileName,
FILE *fp,
long lEOFfset

);

Note that the program does not return error code, but calls the reporting function to
report error. The file fp is not closed in the function even if error has happened during
reading.

1.9.15 build LoadCodeWithOffset()

For detailed definition of the binary format see the code and the documentation of See
〈undefined〉 [build SaveCode()], page 〈undefined〉

In case the file is corrupt the function reports error.
void build_LoadCodeWithOffset(pBuildObject pBuild,

char *szFileName,
long lOffset,
long lEOFfset

);

1.9.16 build LoadCode()

For detailed definition of the binary format see the code and the documentation of See
〈undefined〉 [build SaveCode()], page 〈undefined〉

In case the file is corrupt the function reports error.
void build_LoadCode(pBuildObject pBuild,

char *szFileName
);

1.9.17 build IsFileBinaryFormat()

This function test a file reading its first few characters and decides if the file is binary
format of a basic program or not.



72 ScriptBasic Source Files

int build_IsFileBinaryFormat(char *szFileName
);

1.9.18 build pprint()

This is a debug function that prints the build code into a file.

This function is not finished and the major part of it is commented out using #if 0
construct.

void build_pprint(pBuildObject pBuild,
FILE *f

);

1.9.19 build CreateFTable()

When the binary code of the BASIC program is saved to disk the symbol table of the
user defined functions and the symbol table of global variables is also saved. This may be
needed by some applications that embed ScriptBasic and want to call specific function or
alter global variables of a given name from the embedding C code. To do this they need the
serial number of the global variable or the entry point of the function. Therefore ScriptBasic
v1.0b20 and later can save these two tables into the binary code.

The format of the tables is simple optimized for space and for simplicity of generation.
They are stored first in a memory chunk and then written to disk just as a series of bytes.

The format is

long serial number of variable or entry point of the function
zchar zero character terminated symbol

This is easy to save and to load. Searching for it is a bit slow. Embedding applications
usually have to search for the values only once, store the serial number/entry point value
in their local variable and use the value.

The function CreateFTable converts the symbol table of user defined function collected
by symbolic analysis into a single memory chunk.

The same way See 〈undefined〉 [build CreateVTable()], page 〈undefined〉 converts the
symbol table of global variables collected by symbolic analysis into a single memory chunk.

int build_CreateFTable(pBuildObject pBuild
);

1.9.20 build CreateVTable()

When the binary code of the BASIC program is saved to disk the symbol table of the
user defined functions and the symbol table of global variables is also saved. This may be
needed by some applications that embed ScriptBasic and want to call specific function or
alter global variables of a given name from the embedding C code. To do this they need the
serial number of the global variable or the entry point of the function. Therefore ScriptBasic
v1.0b20 and later can save these two tables into the binary code.



Chapter 1: Introduction 73

The format of the tables is simple optimized for space and for simplicity of generation.
They are stored first in a memory chunk and then written to disk just as a series of bytes.

The format is

long serial number of variable or entry point of the function
zchar zero character terminated symbol

This is easy to save and to load. Searching for it is a bit slow. Embedding applications
usually have to search for the values only once, store it in their local variable and use the
value.

The function See 〈undefined〉 [build CreateFTable()], page 〈undefined〉 converts the sym-
bol table of user defined function collected by symbolic analysis into a single memory chunk.

The same way CreateVTable converts the symbol table of global variables collected by
symbolic analysis into a single memory chunk.

int build_CreateVTable(pBuildObject pBuild
);

1.9.21 build LookupFunctionByName()

long build_LookupFunctionByName(pBuildObject pBuild,
char *s

);

1.9.22 build LookupVariableByName()

long build_LookupVariableByName(pBuildObject pBuild,
char *s

);

1.10 reader.c

This module contains the functions that read a source file.

Script basic has several passes until it can start to execute the code. The very first pass
is to read the source lines from the files. The routines in this module perform this task and
build up a linked list that contains the ascii values of the lines.

The input functions are parametrized, and the caller should support. If you have different
system dependent file reading functions, or if you have the input file in some format in
memory or in any other data holding space you can support these routines with character
fetch functions.

1.10.1 reader IncreaseBuffer()

When the reader encounters a line which is longer than the currently allocated input
buffer it calls this function to increase the size of the input buffer. The input buffer is
linearly increased by BUFFER_INCREMENT size (defined in the header section of reader.c



74 ScriptBasic Source Files

When a new buffer is allocated the bytes from the old buffer are copied to the new and
the old buffer is released. It is vital that the buffer is always referenced via the pRo->buffer
pointer because resizing buffer does change the location of the buffer.

If the memory allocation fails the function return READER_ERROR_MEMORY_LOW error.
Otherwise it returns zero.

int reader_IncreaseBuffer(pReadObject pRo
);

1.10.2 reader gets()

This function reads a newline terminated line from the file. The file is identified by
function pRo->fpGetCharacter and the pointer fp.

When the input buffer is too small it automatically increases the buffer. The terminating
new line is included in the buffer. If the last line of the file is not terminated by newline an
extra newline character is added to this last line.

The addition of this extra newline character can be switched off setting pRo-
>fForceFinalNL to false. Even if this variable is false the normal newline characters which
are present in the file are included in the buffer.

int reader_gets(pReadObject pRo,
void *fp

);

1.10.3 reader ReadLines()

This function calls See 〈undefined〉 [reader ReadLines r()], page 〈undefined〉 to read the
lines of the file given by the file name szFileName into pRo->Result. For further information
see See 〈undefined〉 [reader ReadLines r()], page 〈undefined〉.

int reader_ReadLines(pReadObject pRo,
char *szFileName

);

The function returns zero or the error code.

1.10.4 reader ReadLines r()

This function reads the lines of a file and creates a linked list of the read lines.

int reader_ReadLines_r(pReadObject pRo,
char *szFileName,
pSourceLine *pLine

);

The file is identified by its name given in the string variable szFileName. The file is
opened by the function pointed by pRo->fpOpenFile This function should return a void
pointer and this void pointer is passed to See 〈undefined〉 [reader gets()], page 〈undefined〉
(reader_gets) to get a single character.



Chapter 1: Introduction 75

The argument pLine is a pointer to a SourceLine pointer. The linked list lines read
will be chained into this pointer. The last read line will be followed by the line pointed by
*pLine and *pLine will point to the first line.

This design makes it easy to use and elegant to perform file inclusions. The caller has
to pass the address of the pointer field next of the source line after which the file is to be
inserted.

See also ReadLines that calls this function.

1.10.5 reader ProcessIncludeFiles()

This function is called from See 〈undefined〉 [reader ReadLines()], page 〈undefined〉 after
calling See 〈undefined〉 [reader ReadLines r()], page 〈undefined〉.

This function goes through all the lines and checks if there is any line containing an
include directive.

An include directive is a line starting with a word INCLUDE (case insensitive) and is
followed by the file name. The file name can be enclodes between double quotes.

Note that the processing of the include directives are done on the characters on the line,
because they are processed before any tokenization of the lexer module. This can cause
some problem only when there is an include like line inside a multiline string. For example:

a = """Hey this is a multiline string
include "subfile.txt"
"""

This will include the file subfile.txt and its content will become part of the string.
This becomes more complicated when the file subfile.txt contains strings.

The file name may not be enclosed between double quotes. In this case the file is tried
to be found in predefined system directories.

If the programmer uses the command IMPORT instead of INCLUDE the file will only
be included if it was not included yet into the current program.

void reader_ProcessIncludeFiles(pReadObject pRo,
pSourceLine *pLine

);

The file read is inserted into the plce where the include statement was.

1.10.6 reader LoadPreprocessors()

Preprocessors are not part of ScriptBasic. They can be implemented as external DLLs
and should be configured in the configuration file.

When a line contains
USE preprocessorname

this reader module loads the preprocessor DLL or SO (dll under unix) file.
void reader_LoadPreprocessors(pReadObject pRo,

pSourceLine *pLine
);



76 ScriptBasic Source Files

1.10.7 reader StartIteration()

The package supports functions that help upper layer modules to iterate through the
lines read. This function should be called to start the iteration and to set the internal
iteration pointer to the first line.

void reader_StartIteration(pReadObject pRo
);

1.10.8 reader NextLine()

This function returns a string which is the next line during iteration. This function does
NOT read anything from any file, only returns a pointer to a string that was already read.

This function can be used together with See 〈undefined〉 [reader NextCharacter()],
page 〈undefined〉. When a line was partially passed to an upper layer that uses
reader_NextCharacter this function will only return the rest of the line.

char *reader_NextLine(pReadObject pRo
);

1.10.9 reader NextCharacter()

This function gets the next character from the actual line, or gets the first character of
the next line.

This function does NOT read anything from any file, only returns a character from a
string that was already read.

When the last character of the last line was passed it return EOF

int reader_NextCharacter(void *p
);

1.10.10 reader FileName()

This function returns the file name of the actual line. This is the string that was used to
name the file when it was opened. This can be different for different lines when the reader
is called several times to resolve the "include" statements.

char *reader_FileName(void *p
);

1.10.11 reader LineNumber()

This function returns the line number of the current line durig iteration. This number
identifies the line in the file where it was read from.

long reader_LineNumber(void *p
);



Chapter 1: Introduction 77

1.10.12 reader InitStructure()

This function should be called to initialize the reader structure. It sets the file handling
routines to the standard fopen, fclose and getc functions, and also sets the function
pointers so that the module uses malloc and free.

void reader_InitStructure(pReadObject pRo
);

1.10.13 reader RelateFile()

This function gets a file name, which is either absolute or relative to the current working
directory and another file name which is absolute or relative to the first one.

The return value of the function is a file name which is either absolute or relative to the
current woring directory.

The return value is dynamically allocated and is to be release by the caller. The allocation
function is taken from the class function and the segment is pMemorySegment.

char *reader_RelateFile(pReadObject pRo,
char *pszBaseFile,
char *pszRelativeFile

);

1.10.14 reader DumpLines()

This is a debug function that prints the lines into a debug file.
void reader_DumpLines(pReadObject pRo,

FILE *fp
);

1.11 myalloc.c

1.11.1 Multi-thread use of this module

You can use this module in multi threaded environment. In this case the module depend
on the module thread.c which contains the thread and mutex interface functions that call
the operating system thread and mutex functions on UNIX and on Windows NT.

In single thread environment there is no need to use the locking mechanism. To get a
single-thread version either you can edit this file (myalloc.c) or compile is using the option
-DMTHREAD=0 The default compilation is multi threaded.

Multi thread implementation has two levels. One is that the subroutines implemented
in this module call the appropriate locking functions to ensure that no two concurrent
threads access and modify the same data at a time and thus assure that the data of the
module is correct. The other level is that you can tell the module that the underlying
memory allocation and deallocation modules are mot thread safe. There are global variables



78 ScriptBasic Source Files

implementing global mutexes that are locked and unlocked if you use the module that way.
This can be useful in some environment where malloc and free are not thread safe.

Note that this should not be the case if you call malloc and free or you linked the
wrong versio of libc. However you may use a non-thread safe debug layer for example the
one that ScriptBasic uses.

1.11.2 alloc InitSegment()

Call this function to get a new segment. You should specify the functions that the
segement should use to get memory from the operating system, and the function the segment
should use to release the memory to the operating system. These functions should be like
malloc and free.

If the second argument is NULL then the function will treat the first argument as an
already allocated and initialized memory segment and the memory allocation and freeing
functions will be inherited from that segment.

void *alloc_InitSegment(void * (*maf)(size_t), /* a ’malloc’ and a ’free’ like functions */
void (*mrf)(void *)

);

The return value is a void* pointer which identifies the segment and should be passed
to the other functions as segment argument.

The first argument is the malloc like function and the second if the free like function.

1.11.3 alloc GlobalUseGlobalMutex()

Some installation use memory allocation function that are not thread safe. On some
UNIX installations malloc is not thread safe. To tell the module that all the allocation
function primitives are not thread safe call this function before initializing any segment.

void alloc_GlobalUseGlobalMutex(
);

1.11.4 alloc SegmentLimit()

You can call this function to set a segment limit. Each segment keeps track of the actual
memory allocated to the segment. When a new piece of memory allocated in a segment
the calculated segment size is increased by the size of the memory chunk. When a piece of
memory is release the calculated size of the segment is decreased.

Whenever a segment approaches its limit the next allocation function requesting memory
that would exceed the limit returns NULL and does not allocate memory.

The value of the limit is the number of bytes allowed for the segment. This is the
requested number of bytes without the segment management overhead.

Setting the limit to zero means no limit except the limits of the underlying memory
allocation layers, usually malloc.

You can dynamically set the limit during handling the memory at any time except that
you should not set the limit to zero unless the segment is empty and you should not set



Chapter 1: Introduction 79

the limit to a positive value when the actual limit is zero (no limit) and the segment is
not empty. This restriction is artificial in this release but is needed to be followed to be
compatible with planned future developments.

This function sets the limit for the segment pointed by p and returns the old value of
the segment.

long alloc_SegmentLimit(void *p,
unsigned long NewMaxSize

);

1.11.5 alloc FreeSegment()

Use this function to release all the memory that was allocated to the segment p. Note
that after calling this function the segment is still usable, only the memory that it handled
was released. If you do not need the segment anymore call the function See 〈undefined〉
[alloc FinishSegment()], page 〈undefined〉 that calls this function and then releases the
memory allocated to store the segment information.

Sloppy programmers may pass NULL as argument, it just returns.
void alloc_FreeSegment(void *p
);

1.11.6 alloc FinishSegment()

Use this function to release all the memory that was allocated to the segment p. This
function also releases the memory of the segment head and therefore the segment pointed
by p is not usable anymore.

void alloc_FinishSegment(void *p
);

1.11.7 alloc Alloc()

Use this function to allocate a memory piece from a segment.
void *alloc_Alloc(size_t n,

void *p
);

The first argument is the size to be allocated. The second argument is the segment
which should be used for the allocation.

If the memory allocation fails the function returns NULL.

1.11.8 alloc Free()

You should call this function whenever you want to release a single piece of memory
allocated from a segment. Note that you also have to pass the segment pointer as the
second argument, because the segment head pointed by this void pointer contains the
memory releasing function pointer.

Sloppy programmers may try to release NULL pointer without harm.



80 ScriptBasic Source Files

void alloc_Free(void *pMem, void *p
);

1.11.9 alloc Merge()

Call this function in case you want to merge a segment into another. This can be the
case when your program builds up a memory structure in several steps.

This function merges the segment p2 into p1. This means that the segment p1 will
contain all the memory pieces that belonged to p2 before and p2 will not contain any
allocated memory. However the segment p2 is still valid and can be used to allocated
memory from. If you also want to finish the segment p2 call the function See 〈undefined〉
[alloc MergeAndFinish()], page 〈undefined〉.

void alloc_Merge(void *p1, void *p2
);

Note that the two segments SHOULD use the same, or at least compatible system
memory handling functions! You better use the same functions for both segments.

Example:

ScriptBasic builds up a sophisticated memory structure during syntactical analysis. This
memory structure contains the internal code generated from the program lines of the basic
program. When ScriptBasic analyses a line it tries several syntax descriptions. It checks
each syntax defintion against the tokens of the line until it finds one that fits. These checks
need to build up memory structure. However if the check fails and ScriptBasic should go
for the next syntac definition line to check the memory allocated during the failed checking
should be released. Therefore these memory pieces are allocated from a segment that the
program calls pMyMemorySegment. If the syntax check fails this segment if freed. If the
syntax check succedes this segment is merged into another segement that contains the
memory structures allocated from the previous basic program lines.

1.11.10 alloc MergeAndFinish()

Use this function in case you not only want to merge a segment into another but you
also want to finish the segment that was merged into the other.

See also See 〈undefined〉 [alloc Merge()], page 〈undefined〉
void alloc_MergeAndFinish(void *p1, void *p2
);

1.11.11 alloc InitStat()

This function initializes the global statistical variables. These variables can be used in
a program to measure the memory usage.

This function should be called before any other memory handling function.

void alloc_InitStat(
);



Chapter 1: Introduction 81

1.11.12 alloc GlobalGetStat()

From period to period the code using this memory management layer may need to know
how much memory the program is using.

Calling this function from time to time you can get the minimum and maximum memory
that the program used via this layer since the last call to this function or since program
start in case of the first call.

void alloc_GlobalGetStat(unsigned long *pNetMax,
unsigned long *pNetMin,
unsigned long *pBruMax,
unsigned long *pBruMin,
unsigned long *pNetSize,
unsigned long *pBruSize

);

1.11.13 alloc GetStat()

From period to period the code using this memory management layer may need to know
how much memory the program is using.

Calling this function from time to time you can get the minimum and maximum memory
that the program used via this layer since the last call to this function or since program
start in case of the first call.

void alloc_GetStat(void *p,
unsigned long *pMax,
unsigned long *pMin,
unsigned long *pActSize

);

1.12 match.c

=abstract A simple, non-regular expression pattern matching module mainly to perform
file name pattern matching, like *.txt or file0?.bin and alikes. =end

This is a simple and fast pattern matching algorithm. This can be used when the
matching does not require regular expression complexity and the processign on the other
hand should be fast.

There are two major tasks implemented here. One is to match a string against a pattern.
The second is to create a replacement string. When a pattern is matched by a string an
array of string values are created. Each contains a substring that matches a joker character.
Combining this array and a format string a replacement string can be created.

For example:

String = "mortal combat"
Pattern = "mo?tal co*"



82 ScriptBasic Source Files

the joker characters are the ?, the space (matching one or more space) and the * char-
acter. They are matched by r, two spaces and mbat. If we use the format string

Format string = "$1u$2"

we get the result string rumbat. The format string can contain $n placeholders where n
starts with 1 and is replaced by the actual value of the n-th joker character.

1.12.1 match index

There are a few characters that can be used as joker character. These are
*#$?&%!+/|<>

match_index returns the serial number of the character.
unsigned long match_index(char ch
);

1.12.2 InitSets

Call this function to initialize a set collection. The argument should point to a MatchSets
structure and the function fills in the default values.

void match_InitSets(pMatchSets pMS
);

1.12.3 ModifySet

This function can be used to modify a joker set. The first argument pMS points to the
joker set collection. The second argument JokerCharacter specifies the joker character for
which the set has to be modified.

The argument nChars and pch give the characters that are to be modified in the set.
nChars is the number of characters in the character array pointed by pch.

The last argument fAction specifies what to do. The following constants can be used
in logical OR.

TO_HEADER:

#define MATCH_ADDC 0x0001 //add characters to the set
#define MATCH_REMC 0x0002 //remove characters from the set
#define MATCH_INVC 0x0004 //invert the character
#define MATCH_SNOJ 0x0008 //set becomes no-joker
#define MATCH_SSIJ 0x0010 //set becomes single joker
#define MATCH_SMUJ 0x0020 //set becomes multiple joker
#define MATCH_NULS 0x0040 //nullify the set
#define MATCH_FULS 0x0080 //fullify the set

*/

The function first checks if it has to modify the state of the joker character. If any of
the bits MATCH_SNOJ, MATCH_SSIJ or MATCH_SMUJ is set in the field fAction the type of the
set is modified.



Chapter 1: Introduction 83

If more than one bit of these is set then result is undefined. Current implementation
checks these bits in a specific order, but later versions may change.

If the bit MATCH_NULS is set all the characters are removed from the set. If the bit
MATCH_FULS is set all characters are put into the set.

If more than one bit of these is set then result is undefined. Current implementation
checks these bits in a specific order, but later versions may change.

MATCH_NULS or MATCH_FULS can be used in a single call to initialize the set before adding
or removing the specific characters.

The bits MATCH_ADDC, MATCH_REMC and MATCH_INVC can be used to add characters to
the set, remove characters from the set or to invert character membership. The characters
are taken from the character array pointed by the function argument pch.

If more than one bit of these is set then result is undefined. Current implementation
checks these bits in a specific order, but later versions may change.

If none of these bits is set the value of the pointer pch is ignored.
It is no problem if a character is already in the set and is added or if it is not member of

the set and is removed. Although it has no practical importance the array pointed by pch
may contain a character many times.

void match_ModifySet(pMatchSets pMS,
char JokerCharacter,
int nChars,
unsigned char *pch,
int fAction

);

1.12.4 match

FUNCTION:
match checks if pszString matches the pattern pszPattern. pszPattern is a string con-

taining joker characters. These are:
* matches one or more any character
# matches one or more digit
$ matches one or more alphanumeric character
matches one or more alpha character
(space) matches one or more spaces

? matches a single character

~x matches x even if x is pattern matching character or tilde
x matches character x unless it is a joker character
RETURN VALUE:
The function returns zero if no error occures and returns an error code in case some of

the memory buffer does not have enough space. (Either pszBuffer or ParameterArray)
PARAMETERS:
pszPattern IN the pattern to match
–



84 ScriptBasic Source Files

cbPattern IN the number of characters in the pattern
–
pszString IN the string which is compared to the pattern
–
cbString IN the number of characters in the string
–
ParameterArray OUT is an uninitialized character pointer array. Upon return

ParameterArray[i] points the string that matches the i-th joker character.
–
pcbParameterArray OUT is an uninititalized unsigned long array. Upon return

pcbParameterArray[i] contains the length of the output parameter ParameterArray[i].
–
pszBuffer OUT should point to a buffer. The size of the buffer should be specified by

cbBufferSize. A size equal
cbString

is a safe size. The actual strings matching the joker characters will get into this buffer
zero terminated one after the other:

–
cArraySize IN number of elements in the array ParameterArray

–
cbBufferSize IN size of the buffer pointed by pszBuffer
–
fCase IN pattern matching is performed case sensitive if this value if TRUE.
–
iResult OUT TRUE if pszString matches the pattern pszPattern. FALSE otherwise.
NOTE:
pszPattern and pszString are NOT changed.
If the function returns non-zero (error code) none of the output variables can be reliably

used.
int match_match(char *pszPattern,

unsigned long cbPattern,
char *pszString,
unsigned long cbString,
char **ParameterArray,
unsigned long *pcbParameterArray,
char *pszBuffer,
int cArraySize,
int cbBufferSize,
int fCase,
pMatchSets pThisMatchSets,
int *iResult

);



Chapter 1: Introduction 85

1.12.5 count

This function counts the number of jokers in the string and returns it. This function
should be used to calculate the safe length of the pszBuffer given as a parameter to match.

int match_count(char *pszPattern,
unsigned long cbPattern

);

1.12.6 parameter

This function takes a format string and a string array and copies the format string
replacing $0, $1 ... $n values with the appropriate string values given in the array pointed
by ParameterArray.

RETURN VALUE:
The function returns zero if no error occures and returns an error code in case some of

the memory buffer does not have enough space or invalid parameter is referenced.
PARAMETERS: pszFormat IN The format string containing the $i placeholders.
–
cbFormat IN The number of characters in the format string
–
ParameterArray IN string array so that ParameterArray[i] is to be inserted in place

of the $i placeholders
–
pcbParameterArray IN array of unsigned long values. pcbParameterArray[i] gives

the length of the i-th string parameter.
–
pszBuffer OUT buffer to put the result
–
cArraySize IN Number of parameters given in the ParameterArray
–
pcbBufferSize IN/OUT Available bytes in buffer pointed by pszBuffer. Upon return

it contains the number of characters that were placed in the buffer.
–
NOTE:
If the function returns non-zero (error code) none of the output variables can be reliably

used.
int match_parameter(char *pszFormat,

unsigned long cbFormat,
char **ParameterArray,
unsigned long *pcbParameterArray,
char *pszBuffer,
int cArraySize,



86 ScriptBasic Source Files

unsigned long *pcbBufferSize
);

1.12.7 size

Calculate the size of the output. The IN/OUT parameter cbBufferSize is increased by
the number of needed characters.

The return value is zero if no error occured or the error code.
NOTE: cbBuffer size should be initialized to 0 if you want to get the size of the buffer

needed.
int match_size(char *pszFormat,

unsigned long cbFormat,
unsigned long *pcbParameterArray,
int cArraySize,
int *cbBufferSize

);

1.13 sym.c

1.13.1 sym NewSymbolTable()

This function creates a new symbol table. Later this symbol table should be used to
store and retrieve symbol information.

SymbolTable sym_NewSymbolTable(
void* (*memory_allocating_function)(size_t,void *),
void *pMemorySegment

);

The second argument should point to the memory allocating function that the symbol
table creation process should use. The last argument is an pointer to a memory segment
which is passed to the memory allocation function. The actual arguments of the memory
allocation function fits the allocation function from the package alloc. However the defintion
is general enough to use any other function.

1.13.2 sym FreeSymbolTable()

This function should be used to release the memory allocated for a symbol table. This
function releases all the memory that was allocated during symbol table creation and during
symbol insertion.

Note that the memory allocated outside the symbol table handling routines is not re-
leased. This means that it is the caller responsibility to relase all memory that holds the
actual values associated with the symbols.

void sym_FreeSymbolTable(
SymbolTable table,



Chapter 1: Introduction 87

void (*memory_releasing_function)(void *,void *),
void *pMemorySegment

);

1.13.3 sym TraverseSymbolTable()

This function can be used to traverse through all the symbols stored in a symbol table.
The function starts to go through the symbols and for each symbol calls the function call_
back_function.

void sym_TraverseSymbolTable(
SymbolTable table,
void (*call_back_function)(char *SymbolName, void *SymbolValue, void *f),
void *f

);

The first argument is the symbol table to traverse. The second argument is the function
to be called for each symbol. This function gets three arguments. The first is a pointer to
the symbol string. The second is the pointer to the symbol arguments. The third argument
is a general pointer which is passed to the function sym_TraverseSymbolTable.

Note that the call back function gets the pointer to the symbol arguments and not the
pointer to the pointer to the symbol arguments, and therefore call back function can not
change the actual symbol value pointer.

1.13.4 sym LookupSymbol()

This function should be used to search a symbol or to insert a new symbol.
void **sym_LookupSymbol(
char *s, /* zero terminated string containing the symbol */
SymbolTable hashtable, /* the symbol table */
int insert, /* should a new empty symbol inserted, or return NULL instead */
void* (*memory_allocating_function)(size_t, void *),
void (*memory_releasing_function)(void *, void *),
void *pMemorySegment

);

This function usually returns a pointer to the void * pointer which is supposed to point
to the structure, which actually holds the parameters for the symbol. When a symbol is
not found in the symbol table the parameter insert is used to decide what to do. If this
parameter is zero the function returns NULL. If this parameter is 1 the function creates a
new symbol and returns a pointer to the void * pointer associated with the symbol.

If a new symbol is to be inserted and the function returns NULL means that the memory
allocation function has failed.

If the new symbol was created and a pointer to the void * pointer is returned the value
of the pointer is NULL. In other words:

void **a;



88 ScriptBasic Source Files

a = sym_LookupSymbol(s,table,1,mymema,mymemr,p);

if( a == NULL )error("memory releasing error");
if( *a == NULL )error("symbol not found");

1.13.5 sym DeleteSymbol()

This function should be used to delete a symbol from the symbol table

int sym_DeleteSymbol(
char *s, /* zero terminated string containing the symbol */
SymbolTable hashtable, /* the symbol table */
void (*memory_releasing_function)(void *, void *),
void *pMemorySegment

);

This function searches the given symbol and if the symbol is found it deletes it from the
symbol table. If the symbol was found in the symbol table the return value is zero. If the
symbol was not found the return value is 1. This may be interpreted by the caller as an
error or as a warning.

Note that this function only deletes the memory that was part of the symbol table. The
memory allocated by the caller and handled via the pointer value usually returned by See
〈undefined〉 [sym LookupSymbol()], page 〈undefined〉 should be released by the caller.

1.14 execute.c

This module contain the functions that execute the code resuled by the builder.

1.14.1 execute GetCommandByName()

The op-code of a command can easily be identified, because syntax.h contains symbolic
constant for it. This function can be used by external modules to get this opcode based
on the name of the function. The argument pszCommandName should be the name of the
command, for example "ONERRORRESUMENEXT". The third argument is the hint for the
function to help to find the value. It should always be the opcode of the command. The
return value is the actual opcode of the command. For example:

i = execute_GetCommandByName(pEo,"ONERRORRESUMENEXT",CMD_ONERRORRESUMENEXT);

will return CMD_ONERRORRESUMENEXT.

Why is this function all about then?

The reason is that the external module may not be sure that the code CMD_
ONERRORRESUMENEXT is the same when the external module is compiled and when it is
loaded. External modules negotiate the interface version information with the calling
interpreter, but the opcodes may silently changed from interpreter version to the next
interpreter version and still supporting the same extension interface version.



Chapter 1: Introduction 89

When an external module needs to know the opcode of a command of the calling inter-
preter it first calls this function telling:

I<I need the code of the command ONERRORRESUMENEXT. I think that the code is
CMD ONERRORRESUMENEXT, but is it the real code?>

The argument lCodeHint is required only, because it speeds up search.
If there is no function found for the given name the returnvalue is zero.

long execute_GetCommandByName(pExecuteObject pEo,
char *pszCommandName,
long lCodeHint

);

1.14.2 execute CopyCommandTable()

The command table is a huge table containing pointers to functions. For example the
CMD_LET-th element of the table points to the function COMMAND_LET implementing the
assignment command.

This table is usually treated as constant and is not moduified during run time. In
case a module wants to reimplement a command it should alter this table. However the
table is shared all concurrently running interpreter threads in a multi-thread variation of
ScriptBasic.

To avoid altering the command table of an independent interpreter threadthe module
wanting altering the command table should call this function. This function allocates
memory for a new copy of the command table and copies the original constant value to this
new place. After the copy is done the ExecuteObject will point to the copied command
table and the extension is free to alter the table.

In case the function is called more than once for the same interpreter thread only the
first time is effective. Later the function returns without creating superfluous copies of the
command table.

int execute_CopyCommandTable(pExecuteObject pEo
);

1.14.3 execute InitStructure()

int execute_InitStructure(pExecuteObject pEo,
pBuildObject pBo

);

1.14.4 execute ReInitStructure()

This function should be used if a code is executed repeatedly. The first initialization call
is See 〈undefined〉 [execute InitStructure()], page 〈undefined〉 and consecutive executions
should call this function.

int execute_ReInitStructure(pExecuteObject pEo,
pBuildObject pBo

);



90 ScriptBasic Source Files

1.14.5 execute Execute r()

This function executes a program fragment. The execution starts from the class variable
ProgramCounter. This function is called from the See 〈undefined〉 [execute Execute()],
page 〈undefined〉 function which is the main entry point to the basic main program. This
function is also called recursively from the function See 〈undefined〉 [execute Evaluate()],
page 〈undefined〉 when a user defined function is to be executed.

void execute_Execute_r(pExecuteObject pEo,
int *piErrorCode

);

1.14.6 execute InitExecute()

void execute_InitExecute(pExecuteObject pEo,
int *piErrorCode

);

1.14.7 execute FinishExecute()

void execute_FinishExecute(pExecuteObject pEo,
int *piErrorCode

);

1.14.8 execute Execute()

This function was called from the basic main function. This function performs ini-
titalization that is needed before each execution of the code and calls See 〈undefined〉
[execute Execute r()], page 〈undefined〉 to perform the execution.

Note that See 〈undefined〉 [execute Execute r()], page 〈undefined〉 is recursively calls
itself.

This function is obsolete and is not used anymore. This is kept in the source for the
shake of old third party variations that may depend on this function.

Use of this function in new applications is discouraged.
void execute_Execute(pExecuteObject pEo,

int *piErrorCode
);

1.14.9 execute ExecuteFunction()

This function is used by the embedding layer (aka scriba_ functions) to execute a
function. This function is not directly called by the execution of a ScriptBasic program. It
may be used after the execution of the program by a special embeddign application that
keeps the code and the global variables in memory and calls functions of the program.

The function takes pEo as the execution environment. StartNode should be the node
where the sub or function is defined. cArgs should give the number of arguments. pArgs



Chapter 1: Introduction 91

should point to the argument array. pResult will point to the result. If pResult is NULL
the result is dropped. Otherwise the result is a mortal variable.

Note that this code does not check the number of arguments you provide. There can be
more arguments passed to the SUB than it has declared, therefore you can initialize the local
variables of the sub. (You should know that arguments are local variables in ScriptBasic
just as any other non-argument local variable.)

The arguments should be normal immortal variables. They are passed to the SUB by
reference and in case they are modified the old variable is going to be released.

piErrorCode returns the error code of the execution which is zero in case of no error.

void execute_ExecuteFunction(pExecuteObject pEo,
unsigned long StartNode,
long cArgs,
pFixSizeMemoryObject *pArgs,
pFixSizeMemoryObject *pResult,
int *piErrorCode

);

1.14.10 execute Evaluate()

This function evaluates an expression. You should not get confused! This is not syntax
analysis, caring operator precedences and grouping by nested parentheses. That has already
been done during syntax analysis. This code performs the code that was generated from
an expression.

The result is usually a mortal memory value which is the final result of the expression.
However this piece of code assumes that the caller is careful enough to handle the result as
read only, and sometimes the return value is not mortal. In this case the return value is a
memory object that a variable points to. Whenever the caller needs this value to perform
an operation that does not alter the value it is OK. Duplicating the structure to create
a mortal would be waste of time and memory. On the other hand sometimes operations
modify their operands assuming that they are mortal values. They should be careful.

Operators are actually created in the directory commands and they use the macros defined
in command.h (created by headerer.pl from command.c). They help to avoid pitfalls.

The argument iArrayAccepted tells the function whether an array as a result is accepted
or not. If a whole array is accepted as a result of the expression evaluation the array is
returned. If the array is not an acceptable result, then the first element of the array is
retuned in case the result is an array. If the result is NOT an array this parameter has no
effect.

pFixSizeMemoryObject execute_Evaluate(pExecuteObject pEo,
unsigned long lExpressionRootNode,
pMortalList pMyMortal,
int *piErrorCode,
int iArrayAccepted

);



92 ScriptBasic Source Files

1.14.11 execute LeftValue()

This function evaluate a left value. A left value is a special expression that value can
be assigned, and therefore they usually stand on the left side of the assignment operator.
That is the reason for the name.

When an expression is evaluates a pointer to a memory object is returned. Whenever a
left value is evaluated a pointer to the variable is returned. If any code assignes value to the
variable pointed by the return value of this function it should release the memory object
that the left value points currently.

pFixSizeMemoryObject *execute_LeftValue(pExecuteObject pEo,
unsigned long lExpressionRootNode,
pMortalList pMyMortal,
int *piErrorCode,
int iArrayAccepted

);

1.14.12 execute EvaluateArray()

This function should be used to evaluate an array access to get the actual value. This
is called by See 〈undefined〉 [execute Evaluate()], page 〈undefined〉.

An array is stored in the expression as an operator with many operands. The first
operand is a local or global variable, the rest of the operators are the indices.

Accessing a variable holding scalar value with array indices automatically converts the
variable to array. Accessing an array variable without indices gets the "first" element of
the array.

pFixSizeMemoryObject execute_EvaluateArray(pExecuteObject pEo,
unsigned long lExpressionRootNode,
pMortalList pMyMortal,
int *piErrorCode

);

1.14.13 execute EvaluateSarray()

This function should be used to evaluate an array access to get the actual value. This
is called by See 〈undefined〉 [execute Evaluate()], page 〈undefined〉.

An array is stored in the expression as an operator with many operands. The first
operand is a local or global variable, the rest of the operators are the indices.

Associative arrays are normal arrays, only the access mode is different. When accessing
an array using the fom akey then the access searches for the value key in the evenly indexed
elements of the array and gives the next index element of the array. This if

a[0] = "kakukk"
a[1] = "birka"
a[2] = "kurta"
a[3] = "mamus"

then a"kakukk" is "birka". a"birka" is undef. a"kurta" is "mamus".



Chapter 1: Introduction 93

pFixSizeMemoryObject execute_EvaluateSarray(pExecuteObject pEo,
unsigned long lExpressionRootNode,
pMortalList pMyMortal,
int *piErrorCode

);

1.14.14 execute LeftValueArray()

This function evaluates an array access left value. This function is also called by See 〈un-
defined〉 [execute EvaluateArray()], page 〈undefined〉 and the result pointer is dereferenced.

pFixSizeMemoryObject *execute_LeftValueArray(pExecuteObject pEo,
unsigned long lExpressionRootNode,
pMortalList pMyMortal,
int *piErrorCode

);

1.14.15 execute LeftValueSarray()

This function evaluates an associative array access left value. This function is also called
by See 〈undefined〉 [execute EvaluateSarray()], page 〈undefined〉 and the result pointer is
dereferenced.

pFixSizeMemoryObject *execute_LeftValueSarray(pExecuteObject pEo,
unsigned long lExpressionRootNode,
pMortalList pMyMortal,
int *piErrorCode

);

1.14.16 execute Convert2String()

This functionconverts a variable to string. When the variable is already a string then it
returns the pointer to the variable. When the variable is long or double sprintf is used to
convert the number to string.

When the conversion from number to string is done the result is always a newly allocated
mortal. In other words this conversion routine is safe, not modifying the argument memory
object.

pFixSizeMemoryObject execute_Convert2String(pExecuteObject pEo,
pFixSizeMemoryObject pVar,
pMortalList pMyMortal

);

1.14.17 execute Convert2Long()

This function should be used to convert a variable to long. The conversion is usually
done in place. However strings can not be converted into long in place, because they have
different size. In such a case a new variable is created. If the mortal list pMyMortal is NULL



94 ScriptBasic Source Files

then the new variable in not mortal. In such a case care should be taken to release the
original variable.

Usually there is a mortal list and a new mortal variable is generated. In such a case the
original value is also a mortal and is automatically released after the command executing
the conversion is finished.

Note that strings are converted to long in two steps. The first step converts the string
to double and then this value is converted to long in-place.

pFixSizeMemoryObject execute_Convert2Long(pExecuteObject pEo,
pFixSizeMemoryObject pVar,
pMortalList pMyMortal

);

1.14.18 execute Convert2LongS()

This is the safe version of the conversion function See 〈undefined〉 [exe-
cute Convert2Long()], page 〈undefined〉.

This function ALWAYS create a new variable and does NOT convert a double to long in
place. This function is called by the extensions, because extensions tend to be more laisy
regarding conversion and many converts arguments in place and thus introduce side effect.

To solve this problem we have introduced this function and have set the support table
to point to this function.

pFixSizeMemoryObject execute_Convert2LongS(pExecuteObject pEo,
pFixSizeMemoryObject pVar,
pMortalList pMyMortal

);

1.14.19 execute Convert2Double()

This function should be used to convert a variable to double. The conversion is usually
done in place. However strings can not be converted into double in place, because they
have different size. In such a case a new variable is created. If the mortal list is NULL then
the new variable in not mortal. In such a case care should be taken to release the original
variable.

Usually there is a mortal list and a new mortal variable is generated. In such a case the
original value is also a mortal and is automatically released after the command executing
the conversion is finished.

pFixSizeMemoryObject execute_Convert2Double(pExecuteObject pEo,
pFixSizeMemoryObject pVar,
pMortalList pMyMortal

);

1.14.20 execute Convert2DoubleS()

This is the safe version of the conversion function See 〈undefined〉 [exe-
cute Convert2Double()], page 〈undefined〉.



Chapter 1: Introduction 95

This function ALWAYS create a new variable and does NOT convert a long to double in
place. This function is called by the extensions, because extensions tend to be more laisy
regarding conversion and many converts arguments in place and thus introduce side effect.

To solve this problem we have introduced this function and have set the support table
to point to this function.

pFixSizeMemoryObject execute_Convert2DoubleS(pExecuteObject pEo,
pFixSizeMemoryObject pVar,
pMortalList pMyMortal

);

1.14.21 execute Convert2Numeric()

This function should be used to convert a variable to numeric type.
The conversion results a double or long variable. If the source variable was already a

long or double the function does nothing but results the source variable.
undef is converted to long zero.
The function calls See 〈undefined〉 [execute Convert2Long], page 〈undefined〉 and See

〈undefined〉 [execute Convert2Double], page 〈undefined〉 thus all other parameters are
treated according to that.

pFixSizeMemoryObject execute_Convert2Numeric(pExecuteObject pEo,
pFixSizeMemoryObject pVar,
pMortalList pMyMortal

);

1.14.22 execute Dereference()

This function recursively follows variable references and returns the original variable that
was referenced by the original variable.

A reference variable is a special variable that does not hold value itself but rather a
pointer to another variable. Such reference variables are used when arguments are passed
by reference to BASIC subroutines.

Calling this function the caller can get the original variable and the value of the original
variable rather than a reference.

pFixSizeMemoryObject execute_Dereference(pExecuteObject pEo,
pFixSizeMemoryObject p,
int *piErrorCode

);

See also See 〈undefined〉 [execute DereferenceS()], page 〈undefined〉.

1.14.23 execute DereferenceS()

This function does the same as See 〈undefined〉 [execute Dereference()], page 〈unde-
fined〉 except that it has different arguments fitted to support external modules and besXXX
macros.



96 ScriptBasic Source Files

int execute_DereferenceS(unsigned long refcount,
pFixSizeMemoryObject *p

);

See also See 〈undefined〉 [execute Dereference()], page 〈undefined〉.
If the argument is referencing an undef value then this function converts the argument

to be a real NULL to allow external modules to compare besDEREFERENCEd variables against
NULL.

The subroutine is also error prone handling NULL pointer as argument, though it should
never be happen if the external module programmer uses the macro besDEREFERENCE.

1.14.24 execute GetDoubleValue()

Use this function whenever you want to access the value of a variable as a double.
Formerly ScriptBasic in such situation converted the variable to double calling See 〈unde-
fined〉 [execute Convert2Double()], page 〈undefined〉 and then used the macro DOUBLEVALUE.
This method is faster because this does not create a new mortal variable but returns directly
the double value.

The macro GETDOUBLEVALUE can be used to call this function with the default execution
environment variable pEo

Note however that the macro GETDOUBLEVALUE and DOUBLEVALUE are not interchange-
able. GETDOUBLEVALUE is returnig a double while DOUBLEVALUE is a left value available to
store a double.

double execute_GetDoubleValue(pExecuteObject pEo,
pFixSizeMemoryObject pVar

);

1.14.25 execute GetLongValue()

Use this function whenever you want to access the value of a variable as a long. For-
merly ScriptBasic in such situation converted the variable to long calling See 〈undefined〉
[execute Convert2Long()], page 〈undefined〉 and then used the macro LONGVALUE. This
method is faster because this does not create a new mortal variable but returns directly the
long value.

The macro GETLONGVALUE can be used to call this function with the default execution
environment variable pEo

Note however that the macro GETLONGVALUE and LONGVALUE are not interchangeable.
GETLONGVALUE is returnig a long while LONGVALUE is a left value available to store a long.

long execute_GetLongValue(pExecuteObject pEo,
pFixSizeMemoryObject pVar

);

Please also note that the result of converting a string variable to LONG and then ac-
cessing its longvalue may not result the same number as calling this function. The reason
is that conversion of a string to a LONG variable is done in two steps. First it converts the



Chapter 1: Introduction 97

string to a double and then it rounds the double value to long. On the other hand this
function converts a string diretly to long.

For example the string "3.7" becomes 4 when converted to long and 3 when getting the
value as a long.

1.14.26 execute IsStringInteger()

This function should be used to check a string before converting it to numeric value. If
the string contains only digits it should be converted to long. If the string contains other
characters then it should be converted to double. This function decides what characters the
string contains.

int execute_IsStringInteger(pFixSizeMemoryObject pVar
);

1.14.27 execute IsInteger()

This function checks that a variable being long, double or string can be converted to
long without loosing information.

int execute_IsInteger(pFixSizeMemoryObject pVar
);

1.15 dynlolib.c

The Dynamic Load Libraries are handled different on all operating systems. This file
implements a common functional base handling the DLLs for ScriptBasic. All other modules
of ScriptBasic that want to use DLLs should call only the functions implemented in this
file.

=toc

1.15.1 dynlolib LoadLibrary

This function loads a library and returns a pointer that can be used in other functions
referencing the loaded library.

void *dynlolib_LoadLibrary(
char *pszLibraryFile

);

The argument pszLibraryFile is the ZCHAR file name.
The file name is either absolute or relative. When a relative file name is specified the

directories searched may be different on different operating systems.

1.15.2 dynlolib FreeLibrary

This function releases the library that was loaded before using See 〈undefined〉 [dyn-
lolib LoadLibrary], page 〈undefined〉



98 ScriptBasic Source Files

void dynlolib_FreeLibrary(
void *pLibrary

);

The argument pLibrary is the pointer, which was returned by the function See 〈unde-
fined〉 [dynlolib LoadLibrary], page 〈undefined〉

1.15.3 dynlolib GetFunctionByName

This function can be used to get the entry point of a function of a loaded module
specifying the name of the function.

void *dynlolib_GetFunctionByName(
void *pLibrary,
char *pszFunctionName

);

The argument pLibrary is the pointer, which was returned by the function See 〈unde-
fined〉 [dynlolib LoadLibrary], page 〈undefined〉

The argument pszFunctionName is the ZCAR function name.

1.16 conftree.c

1.16.1 cft init()

Before calling any other configuration handling function the caller has to prepare a
tConfigTree structure. To do this it has to call this function.

The first argument has to point to an allocated and uninitialized tConfigTree structure.
The second argument has to point to a memory allocating function. The third argument has
to point to the memory releasing function that is capable releasing the memory allocated
by the memory allocating function.

The argument pMemorySegment should be the segment pointer to the memory handling
functions. All memory allocation will be performed calling the memory_allocating_
function and passing the pMemorySegment pointer as second argument to it. All
memory releasing will be done via the function memory_releasing_function passing
pMemorySegment pointer as second argument. This lets the caller to use sophisticated
memory handling architecture.

On the other hand for the simple use all these three arguments can be NULL. In this
case the configuration management system will use its own memory allocating and releasing
function that simply uses malloc and free. In this case pMemorySegment is ignored.

For a ready made module that delivers more features see the alloc module of the Script-
Basic project at http://scriptbasic.com

int cft_init(ptConfigTree pCT,
void *(*memory_allocating_function)(size_t, void *),
void (*memory_releasing_function)(void *, void *),
void *pMemorySegment



Chapter 1: Introduction 99

);

Note that suggested convention is to use the ’.’ character as separator for hierarchical
key structures, but this is only a suggestion. In other words the module writers advice is to
use key.subkey.subsubkey as key string for hierarchical strings. On the other hand you
can use any character as separator except the zero character and except the characters that
are used as key characters. You can write

key\subkey\subsubkey

if you are a windows geek. To do this you have to change the character saying

pCT->TC = ’\\’;

after calling the initialization function. You can change this character any time, this
character is not used in the configuration structure. The only point is that you have to use
the actual character when you have changed it. The best practice is to use the dot ever.

1.16.2 cft GetConfigFileName()

This function tries to locate the configuration file. The working of this function is system
dependant. There are two different implementations: one for UNIX and one for Win32.

WIN32

On Win32 systems the function tries to read the system registry. The value of the key
given in the argument env is used and returned as the config file name. For example if the
argument env is Software\myprog\conf then the registry value of the key HKEY_LOCAL_
MACHINE\Software\myprog\conf will be returned as configuration file name. The program
does not check that the file really exists. It only checks that the registry key exists, it is a
string and has some value.

If the registry key does not exists the program tries to locate the system directory getting
the environment variable windir, then systemroot and finally taking c:\WINDOWS. The
argument DefaultFileName is appended to the directory name and is returned.

UNIX

On UNIX it is more simple. The environment variable env is used as a file name. If this
does not exists the DefaultFileName is used and returned.

BOTH

The return value of the function is zero if no error has happened. A pointer to the
resulting file name is returned in the variable ppszConfigFile. The space to hold the re-
sulting file name is allocated via the allocation function given by the tConfigTree structure
pointed by pCT.

int cft_GetConfigFileName(ptConfigTree pCT,
char **ppszConfigFile,
char *env,/* environment variable or registry key on win32 */
char *DefaultFileName

);

This function is static and can not be called from outside of this module.



100 ScriptBasic Source Files

1.16.3 cft start()

When writing real applications you usually want to call this function. This function
initializes the tConfigTree structure pointed by pCT, searches for the configuration file and
reads it.

When trying to allocate the configuration file the static internal function See 〈undefined〉
[GetConfigFileName], page 〈undefined〉 is used.

The argument Envir is the registry key under HKLM, eg Software\Myprog\conf under
Win32 or the environment variable to look for the configuration file name. The argument
pszDefaultFileName is the file name searched on WIN32 in the system directories or the full
path to the default configuration file nam eunder UNIX. The argument pszForcedFileName
can overrride the file name search or has to be NULL to let the reader search the environment
and registry for file name.

int cft_start(ptConfigTree pCT,
void *(*memory_allocating_function)(size_t, void *),
void (*memory_releasing_function)(void *, void *),
void *pMemorySegment,
char *Envir,
char *pszDefaultFileName,
char *pszForcedFileName

);

1.16.4 strmyeq()

This is an internal static function that compares two strings and returns true iff they
are equal. The string terminator is the usual zero character or the dot. Both are legal
terminators for this functions and their difference in the compared strings is not treated
as difference in the result. If one string is terminated by zero character and the other is
terminated by a dot but they are the same in any other character then the return value is
true.

This function is used find a sub-key when the caller has specified a dot separated hier-
archical key.

Note that the dot is only a convention and the default value for the separator and the
caller has

/**/
static int strmyeq(ptConfigTree pCT,char *a, char *b)

This function is static and can not be called from outside of this module.

1.16.5 cft FindNode()

Find a node starting from the start node lStartNode and searching for the key.

The function returns zero if the key is not found in the configuration information tree
pCT or returns the node id of the key. This node can either be an internal node or leaf.



Chapter 1: Introduction 101

Note that the string key may contain dot characters. In this case the key is searched
down in the configuration tree. (You can set the separator character different from the dot
character.)

CFT_NODE cft_FindNode(ptConfigTree pCT,
CFT_NODE lStartNode,
char *key

);

You need this function when you want to iterate over the sub-keys of a node. You get the
node id for the key and then you can call See 〈undefined〉 [cft EnumFirst], page 〈undefined〉
to start the loop and then See 〈undefined〉 [cft EnumNext], page 〈undefined〉 to iterate the
loop over the sub-keys.

If you just want to get the value of a single key you can call the function See 〈undefined〉
[cft GetEx], page 〈undefined〉 that uses this function.

1.16.6 cft GetEx()

Get the value associated with the key key from the configuration structure pCT, or get
the values of a node.

The arguments:

pCT the configuration information searched.

key the key that we search the value for, or NULL if we already know the node id
where the needed information is.

plNodeId the id of the node that we need information from. If the key argumentum is
not NULL then this argument is overwritten with the node id associated with the key.
If the argument key is NULL this argument should specify the id of the node we need
information from. If the node id is not needed upon return this argument may point
to NULL.

ppszValue will return a pointer to a constant ZCHAR string if the value associated
with key is string. If the argument is NULL then the function ignore this argument.

plValue will return a long if the value associated with key is integer. If the argument
is NULL then the function ignore this argument.

pdValue will return a double if the value associated with key is a real number. If the
argument is NULL then the function ignore this argument.

type will return the type of the key. This can be

CFT_NODE_BRANCH if the key is associated with a subtree.

CFT_TYPE_STRING if the key is associated with a string

CFT_TYPE_INTEGER if the key is associated with an integer number

CFT_TYPE_REAL if the key is associated with a real number

This argument can also be NULL if the caller is not interested in the type of the value.

Note that any of ppszValue, plValue, pdValue can point to a variable or to NULL in
case the caller does not need the actual value.



102 ScriptBasic Source Files

int cft_GetEx(ptConfigTree pCT,
char *key,
CFT_NODE *plNodeId,
char **ppszValue,
long *plValue,
double *pdValue,
int *type

);

The function returns CFT_ERROR_SUCCESS if no error happens. The value CFT_ERROR_
SUCCESS is zero.

If an error happens the error code is returned. These error codes are:
CFT_ERROR_NOT_FOUND the key is not present in the table, and *plNodeId will also be
set to zero.
CFT_ERROR_NOTYPE the key is found but has a type that can not be returned, because
the caller passed NULL as storage location. In this case the type of the configuration
information is probably wrong.

1.16.7 cft GetString()

This is the simplest interface function to retrieve a configuration string. This assumes
that you exactly know the name of the key and you are sure that the value is a string. The
function returns the pointer to the constant string or returns NULL if the configuration key
is not present in the tree or the value is not a string.

The use of this function is not recommended. This function is present in this package to
ease porting of programs that use simpler configuration information management software.

char *cft_GetString(ptConfigTree pCT,
char *key

);

This function calls See 〈undefined〉 [cft GetEx], page 〈undefined〉.

1.16.8 cft EnumFirst()

Whenever you need to enumerate the sub-keys of a key you have to get the node asso-
ciated with the key (see See 〈undefined〉 [cft GetEx], page 〈undefined〉 or See 〈undefined〉
[cft FindNode], page 〈undefined〉). When you have the node associated with the key you
can get the node of the first sub-key calling this function.

The function needs the node id lNodeId of the key for which we need to enumerate the
sub keys and returns the node id of the first sub key.

If the key is associated with a leaf node the function returns zero.
If the key is associated with a branch node that has no sub-keys the function returns

zero.
CFT_NODE cft_EnumFirst(ptConfigTree pCT,

CFT_NODE lNodeId
);



Chapter 1: Introduction 103

1.16.9 cft EnumNext()

Whenever you need to enumerate the sub-keys of a key you have to get the node asso-
ciated with the key (see See 〈undefined〉 [cft GetEx], page 〈undefined〉 or See 〈undefined〉
[cft FindNode], page 〈undefined〉). When you have the node associated with the key you
can get the node of the first sub-key calling the function See 〈undefined〉 [cft EnumFirst],
page 〈undefined〉. Later on you can enumerate the sub keys stepping from node to node
calling this function.

The function needs the node id lNodeId returned by See 〈undefined〉 [cft EnumFirst],
page 〈undefined〉 or by previous call of this function.

The function returns the node id of the next sub key.

If the enumeration has ended, in other words there is no next sub-key the function
returns zero.

long cft_EnumNext(ptConfigTree pCT,
long lNodeId

);

1.16.10 cft GetKey()

This function returns a pointer to the constant zchar string that holds the key of the
node defined by the id lNodeId.

char *cft_GetKey(ptConfigTree pCT,
CFT_NODE lNodeId

);

1.16.11 cft ReadConfig()

int cft_ReadConfig(ptConfigTree pCT,
char *pszFileName

);

1.16.12 cft WriteConfig()

int cft_WriteConfig(ptConfigTree pCT,
char *pszFileName

);

1.16.13 cft DropConfig()

void cft_DropConfig(ptConfigTree pCT
);



104 ScriptBasic Source Files

1.17 filesys.c

=abstract The file filesys.h contains file handling primitive functions. The reason for
this module is to have all system specific file handling functions to be separated in a single
file. All other modules use these functions that behave the same on Win32 platform as well
as on UNIX. =end These functions are to be used by other parts of the program. They
implement system specific operations, and other levels need not care about these system
specific stuff.

The function names are prefixed usually with file_, some are prefixed with sys_.
=toc

1.17.1 file fopen

This is same as fopen.
VMS has some specialities when writing a file.

FILE *file_fopen(
char *pszFileName,
char *pszOpenMode

);

1.17.2 file fclose

This is same as fclose. Nothing special. This is just a placeholder.
void file_fclose(FILE *fp
);

1.17.3 file size

long file_size(char *pszFileName
);

1.17.4 file time accessed

long file_time_accessed(char *pszFileName
);

1.17.5 file time modified

long file_time_modified(char *pszFileName
);

1.17.6 file time created

long file_time_created(char *pszFileName
);



Chapter 1: Introduction 105

1.17.7 file isdir

int file_isdir(char *pszFileName
);

1.17.8 file isreg

int file_isreg(char *pszFileName
);

1.17.9 file exists

int file_exists(char *pszFileName
);

1.17.10 file truncate

It return 0 on success and -1 on error.

int file_truncate(FILE *fp,
long lNewFileSize

);

1.17.11 file fgetc

Nothing special, it is just a placeholder.

int file_fgetc(FILE *fp
);

1.17.12 file ferror

Nothing special, it is just a placeholder.

int file_ferror(FILE *fp
);

1.17.13 file fread

Nothing special, it is just a placeholder.

int file_fread(char *buf,
int size,
int count,
FILE *fp

);



106 ScriptBasic Source Files

1.17.14 file fwrite

Nothing special, it is just a placeholder.
int file_fwrite(char *buf,

int size,
int count,
FILE *fp

);

1.17.15 file fputc

Nothing special, it is just a placeholder.
int file_fputc(int c, FILE *fp
);

1.17.16 file setmode

Nothing special, it is just a placeholder. On UNIX this is doing nothing transparently.
void file_setmode(FILE *fp,

int mode
);

1.17.17 file binmode

void file_binmode(FILE *fp
);

1.17.18 file textmode

void file_textmode(FILE *fp
);

1.17.19 file flock

int file_flock(FILE *fp,
int iLockType

);

1.17.20 file lock

int file_lock(FILE *fp,
int iLockType,
long lStart,
long lLength

);



Chapter 1: Introduction 107

1.17.21 file feof

Nothing special, it is just a placeholder.
int file_feof(FILE *fp
);

1.17.22 file mkdir

This is the usual UNIX mkdir function. The difference is that the access code is always
0777 on UNIX which means that the user, group and others can read, write and execute the
directory. If the permission needed is different from that you have to call the file_chmod
function as soon as it becomes available.

The argument of the function is the name of the desired directory.
int file_mkdir(char *pszDirectoryName
);

1.17.23 file rmdir

This is the usual UNIX rmdir function.
The argument of the function is the name of the directory to be deleted.

int file_rmdir(char *pszDirectoryName
);

1.17.24 file remove

Nothing special, it is just a placeholder. This function performs the UNIX remove
functionality. This function also exists under WIN32, therefore this function is only a
placeholder.

int file_remove(char *pszFileName
);

1.17.25 file deltree

int file_deltree(char *pszDirectoryName
);

1.17.26 file MakeDirectory

This function is a bit out of the line of the other functions in this module. This function
uses the file_mkdir function to create a directory. The difference is that this function tries
to create a directory recursively. For example you can create the directory

/usr/bin/scriba

with a simple call and the function will create the directories /usr if it did not exist,
then /usr/bin and finally /usr/bin/scriba The function fails if the directory can not be



108 ScriptBasic Source Files

created because of access restrictions or because the directory path or a sub path already
exists, and is not a directory.

The argument of the function is the name of the desired directory.
The function alters the argument replacing each \ character to /
The argument may end with / since v1.0b30
If the argument is a Windows full path including the drive letter, like ’C:’ the function

tries to create the directory ’C:’, which fails, but ignores this error because only the last
creation in the line down the directory path is significant.

In case of error, the argument may totally be destroyed.
int file_MakeDirectory(char *pszDirectoryName
);

1.17.27 file opendir

This function implements the opendir function of UNIX. The difference between this
implementation and the UNIX version is that this implementation requires a DIR structure
to be passed as an argument. The reason for this is that the Windows system calls do not
allocate memory and pass return values in structures allocated by the caller. Because we
did not want to implement memory allocation in these routines we followed the Windows
like way.

The first argument pszDirectoryName is a ZCAR directory name to be scanned. The
second argument is an allocated DIR structure that has to be valid until the file_closedir
is called.

The second parameter under UNIX is not used. However to be safe and portable to
Win32 the parameter should be handled with care.

DIR *file_opendir(char *pszDirectoryName,
tDIR *pDirectory

);

1.17.28 file readdir

This function is the implementation of the UNIX readdir

struct dirent *file_readdir(DIR *pDirectory
);

1.17.29 file closedir

void file_closedir(DIR *pDirectory
);

1.17.30 file sleep

void sys_sleep(long lSeconds
);



Chapter 1: Introduction 109

1.17.31 file curdir

The first argument should point to a buffer having space for at least cbBuffer characters.
The function will copy the name of the current directory into this buffer.

Return value is zero on success. If the current directory can not be retrieved or the
buffer is too short the return value is -1.

int file_curdir(char *Buffer,
unsigned long cbBuffer

);

1.17.32 file chdir

int file_chdir(char *Buffer
);

1.17.33 file chown

This function implements the chown command of the UNIX operating system on UNIX
and Windows NT. The first argument is the ZCHAR terminated file name. No wild card
characters are allowed.

The second argument is the name of the desired new user. The function sets the owner
of the file to the specified user, and returns zero if the setting was succesful. If the setting
fails the function returns an error code. The error codes are:

COMMAND ERROR CHOWN NOT SUPPORTED COMMAND ERROR CHOWN INVALID USER
COMMAND ERROR CHOWN SET OWNER

int file_chown(char *pszFile,
char *pszOwner

);

1.17.34 file getowner

int file_getowner(char *pszFileName,
char *pszOwnerBuffer,
long cbOwnerBuffer

);

1.17.35 file SetCreateTime

Note that this time value does not exist on UNIX and therefore calling this function
under UNIX result error.

The argument to the function is the file name and the desired time in number of seconds
since the epoch. (January 1, 1970. 00:00)

If the time was set the return value is zero. If there is an error the return value is the
error code.



110 ScriptBasic Source Files

int file_SetCreateTime(char *pszFile,
long lTime

);

1.17.36 file SetModifyTime

The argument to the function is the file name and the desired time in number of seconds
since the epoch. (January 1, 1970. 00:00)

If the time was set the return value is zero. If there is an error the return value is the
error code.

int file_SetModifyTime(char *pszFile,
long lTime

);

1.17.37 file SetAccessTime

The argument to the function is the file name and the desired time in number of seconds
since the epoch. (January 1, 1970. 00:00)

If the time was set the return value is zero. If there is an error the return value is the
error code.

int file_SetAccessTime(char *pszFile,
long lTime

);

1.17.38 file gethostname

This function gets the name of the host that runs the program. The result of the function
is positive if no TCP/IP protocol is available on the machine or some error occured.

In case of success the return value is zero.
int file_gethostname(char *pszBuffer,

long cbBuffer
);

The first argument should point to the character buffer, and the second argument should
hold the size of the buffer in bytes.

1.17.39 file gethost

This function gets the struct hostent entry for the given address. The address can be
given as a FQDN or as an IP octet tuple, like www.digital.com or 16.193.48.55

Optionally the address may contain a port number separated by : from the name or the
IP number. The port number is simply ignored.

int file_gethost(char *pszBuffer,
struct hostent *pHost

);



Chapter 1: Introduction 111

pszBuffer should hold the name or the address of the target machine. This buffer is
not altered during the function.

pHost should point to a buffer ready to hold the hostent information.

Note that the structure hostent contains pointers outside the structre. Those pointers
are copied verbatim thus they point to the original content as returned by the underlying
socket layer. This means that the values the hostent structure points to should not be
freed, altered and the values needed later should be copied as soon as possible into a safe
location before any other socket call is done.

1.17.40 file tcpconnect

This function tries to connect to the remote port of a remote server. The first argument
of the function should be a pointer to SOCKET variable as defined in filesys.h or in the
Windows header files. The second argument is a string that contains the name of the remote
host, or the IP number of the remote host and the desired port number following the name
separated by a colon. For example index.hu:80 tries to connect to the http port of the
server index.hu. You can also write 16.192.80.33:80 to get a connection. The function
automatically recognizes IP numbers and host names. The socket is created automatically
calling the system function socket.

If the function successfully connected to the remote server the return value is zero.
Otherwise the return value is the error code.

int file_tcpconnect(SOCKET *sClient,
char *pszRemoteSocket

);

1.17.41 file tcpsend

int file_tcpsend(SOCKET sClient,
char *pszBuffer,
long cbBuffer,
int iFlags

);

1.17.42 file tcprecv

int file_tcprecv(SOCKET sClient,
char *pszBuffer,
long cbBuffer,
int iFlags

);

1.17.43 file tcpclose

int file_tcpclose(SOCKET sClient
);



112 ScriptBasic Source Files

1.17.44 file killproc

This function kills a process identified by the process ID (PID).
If the process is killed successfully the return value is zero, otherwise a positive value.

int file_killproc(long pid
);

1.17.45 file fcrypt

This function implements the password encryption algorithm using the DES function.
The first argument is the clear text password, the second argument is the two character
salt value. This need not be zero terminated. The third argument should point to a 13
characters char array to get the encoded password. buff[13] will contain the terminating
zchar upon return.

char *file_fcrypt(char *buf, char *salt, char *buff
);

1.17.46 file CreateProcess

This function creates a new process using the argument as command line. The function
does NOT wait the new process to be finished but returns the pid of the new process.

If the new process can not be started the return value is zero.
The success of the new process however can not be determined by the return value. On

UNIX this value is generated by the fork system call and it still may fail to replace the
executeable image calling exevp. By that time the new program creation is already in the
newprocess and is not able to send back any error information to the caller.

The caller of this function should also check other outputs of the created process that of
the pid is returned. For example if the execv call failed the process exit code is 1. This is
usually an error information of a process.

long file_CreateProcess(char *pszCommandLine
);

1.17.47 file CreateProcessEx

This function starts a new process and starts to wait for the process. The caller can
specify a timeout period in seconds until the function waits.

When the process terminates or the timeout period is over the function returns.
int file_CreateProcessEx(char *pszCommandLine,

long lTimeOut,
unsigned long *plPid,
unsigned long *plExitCode

);

Arguments:



Chapter 1: Introduction 113

pszCommandLine the command to execute

lTimeOut the maximum number of seconds to wait for the process to finish. If this
is zero the function will not wait for the process. If the value is -1 the function wait
without limit until the created process finishes.

plPid pointer to variable where the PID of the new process is placed. This parameter
can be NULL. If the function returns after the new process has terminated this value is
more or less useless. However this parameter can be used to kill processes that reach
the timeout period and do not terminate.

plExitCode pointer to a variable where the exit code of the new process is placed. If
the process is still running when the function returns this parameter is unaltered.

The return value indicates the success of the execution of the new process:

FILESYSE_SUCCESS The process was started and terminated within the specified time-
out period.

FILESYSE_NOTSTARTED The function could not start the new process. (not used under
UNIX)

FILESYSE_TIMEOUT The process was started but did not finish during the timeout
period.

FILESYSE_NOCODE The process was started and finished within the timeout period but
it was not possible to retrieve the exit code.

Note that the behaviour of this function is slightly different on Windows NT and on
UNIX. On Windows NT the function will return FILESYSE_NOTSTARTED when the new
process can not be started. Under UNIX the process performs a fork() and then an
execv. The fork() does not return an error value. When the execvp fails it is already in
the new process and can not return an error code. It exists using the exit code 1. This may
not be distinguished from the program started and returning an exit code 1.

1.17.48 file waitpid

This function checks if a process identified by the process ID (PID) is still running.

If the process is live the return value is zero (FALSE), otherwise a positive value (TRUE)
is returned and the second parameter contains the exited process’s final status.

int file_waitpid(long pid,
unsigned long *plExitCode

);

1.18 modumana.c

This file contains all the functions that handle external module management.

Note that all function names are prepended by modu_



114 ScriptBasic Source Files

1.18.1 modu Init

This function allocates memory for the external module interface table and initializes
the function pointers.

If the interface already exists and the function is called again it just silently returns.
The second argument can be zero or 1. The normal operation is zero. If iForce is true

the function sets each function pointer to its initial value even if an initialization has already
occured before.

This can be used in a rare case when a module modifies the interface table and want to
reinitialize it to the original value. Be carefule with such constructions.

int modu_Init(pExecuteObject pEo,
int iForce

);

1.18.2 modu Preload

int modu_Preload(pExecuteObject pEo
);

1.18.3 modu GetModuleFunctionByName

This function gets the entrypoint of a module function. This module can either be
statically or dynamically linked to ScriptBasic. This function is one level higher than
See 〈undefined〉 [GetStaticFunctionByName], page 〈undefined〉 or See 〈undefined〉 [dyn-
lolib GetFunctionByName], page 〈undefined〉. The first argument to this function is not
the module handle as returned by See 〈undefined〉 [dynlolib LoadLibrary], page 〈undefined〉
but rather the pointer to the module description structure that holds other information on
the modula. Namely the information that the module is loaded from dll or so, or if the
module is linked to the interpreter static.

void *modu_GetModuleFunctionByName(
pModule pThisModule,
char *pszFunctionName

);

1.18.4 modu GetStaticFunctionByName

Get the entry point of a function that was linked to the ScriptBasic environment stati-
cally.

This is the counterpart of the function dynlolib_GetFunctionByName for functions in
library linked static. This function searches the SLFST table for the named function and
returns the entry point or NULL if there is no functions with the given name defined.

void *modu_GetStaticFunctionByName(
void *pLibrary,
char *pszFunctionName

);



Chapter 1: Introduction 115

1.18.5 modu LoadModule

This function loads a module and returns the module pointer to in the argument
pThisModule. If the module is already loaded it just returns the module pointer.

When the function is called first time for a module it loads the module, calls the version
negotiation function and the module initializer.

If module file name given in the argument pszLibrary file name is an absolute file name
this is used as it is. Otherwise the different configured module directories are seached for
the module file, and the operating system specific extension is also appended to the file
name automatically.

If the caller does not need the pointer to the module the argument pThisModule can be
NULL.

int modu_LoadModule(pExecuteObject pEo,
char *pszLibraryFile,
pModule **pThisModule

);

1.18.6 modu GetFunctionByName

This function can be called to get the entry point of a function from an external module.
If the module was not loaded yet it is automatically loaded.

int modu_GetFunctionByName(pExecuteObject pEo,
char *pszLibraryFile,
char *pszFunctionName,
void **ppFunction,
pModule **pThisModule

);

1.18.7 modu UnloadAllModules

This function unloads all modules. This is called via the command finalizer mechanizm.
If ever any module was loaded via a "declare sub" statement the command execution sets
the command finalizer function pointer to point to this function.

int modu_UnloadAllModules(pExecuteObject pEo
);

In a multi-threaded environment this function calls the keeper function of the module
and in case the keeper returns 1 the module is kept in memory, though the module finalizer
function is called. This lets multi-thread external modules to keep themselfs in memory
even those times when there is not any interpreter thread using the very module running.

In that case the module is put on the module list of the process SB object. That list is
used to shut down the modules when the whole process is shut down.

If there is no process SB object (pEo->pEPo is NULL) then the variation is a single
process single thread implementation of ScriptBasic. In this case this function first calls the
module finalizer function that is usally called in multi-threaded environment every time an



116 ScriptBasic Source Files

interpreter thread is about to finish and after this the module shutdown function is called,
which is called in a multi-thread environment when the whole process is to be shut down.
After that the module is unloaded even if the keeper function said that the module wants
to stay in memory.

Don’t worry about this: it is not abuse. The keeper function saying 1 means that the
module has to stay in memory after the actual interpreter thread has finished until the
process finishes. However in this very case the process also terminates.

Note: A one-process one-thread implementation may also behave like a multi thread
implementation allocating a separate process SB object and a program object to run. Then
it should inherit the support table and the execution object of the process SB object to
the runnable program object. After running finish the runned program object and call
the shutdown process for the process SB object. But that is tricky for a single thread
implementation.

1.18.8 modu UnloadModule

This function unloads the named module. Note that this function is not called unless
some extension module calls it to unload another module.

Currently there is no support for a module to unload itself.
int modu_UnloadModule(pExecuteObject pEo,

char *pszLibraryFile
);

1.18.9 modu ShutdownModule

This function calls the shutdown function of a module.
If the shutdown function performs well and returns SUCCESS this function also returns

success. If the shutdown function returns error code it means that the module has running
thread and thus can not be unloaded.

int modu_ShutdownModule(pExecuteObject pEo,
pModule pThisModule

);

1.19 hookers.c

This file contains the hook functions that are called by the commands whenever a com-
mand wants to access the operating system functions. The hook functions implemented
here are transparent, they call the operating system. However these hook functions are
called via the HookFunctions function pointer table and external modules may alter this
table supplying their own hook functions.

There are some hook functions, which do not exist by default. In this case the hook
functions table points to NULL. These functions, if defined are called by ScriptBasic at
certain points of execution. For example the function HOOK_ExecBefore is called each time
before executing a command in case an external module defines the function altering the
hook function table.



Chapter 1: Introduction 117

The hook functions have the same arguments as the original function preceeded by the
pointer to the execution object pExecuteObject pEo. For example the function fopen has
two arguments to char *, and therefore HOOK fopen has three. The first should point to
pEo and the second and third should point to

1.19.1 hook Init

This function allocates a hook function table and fills the function pointers to point to
the original transparent hook functions.

int hook_Init(pExecuteObject pEo,
pHookFunctions *pHookers

);

1.19.2 hook file access

This function gets a file name as an argument and return an integer code that tells
the caller if the program is allowed to read, write or both read and write to the file. The
default implementation just dumbly answers that the program is allowed both read and
write. This function is called by each other hook functions that access a file via the file
name. If a module wants to restrict the basic code to access files based on the file name the
module does not need to alter all hook functions that access files via file name.

The module has to write its own file_access hook function instead, alter the hook
function table to point to the module’s function and all file accessing functions will ask the
module’s hook function if the code may access the file.

The argument pszFileName is the name of the file that the ScriptBasic program want to
do something. The actual file_access hook function should decide if the basic program
is

0 not allowed to access the file
1 allowed to read the file
2 allowed to write the file (modify)
3 allowed to read and write the file

The default implementation of this function just allows the program to do anything.
Any extension module may have its own implementation and restrict the basic program to
certain files.

int hook_file_access(pExecuteObject pEo,
char *pszFileName

);

1.19.3 hook fopen

FILE *hook_fopen(pExecuteObject pEo,
char *pszFileName,
char *pszOpenMode

);



118 ScriptBasic Source Files

1.19.4 hook fclose

void hook_fclose(pExecuteObject pEo,
FILE *fp

);

1.19.5 hook size

long hook_size(pExecuteObject pEo,
char *pszFileName

);

1.19.6 hook time accessed

long hook_time_accessed(pExecuteObject pEo,
char *pszFileName

);

1.19.7 hook time modified

long hook_time_modified(pExecuteObject pEo,
char *pszFileName

);

1.19.8 hook time created

long hook_time_created(pExecuteObject pEo,
char *pszFileName

);

1.19.9 hook isdir

int hook_isdir(pExecuteObject pEo,
char *pszFileName

);

1.19.10 hook isreg

int hook_isreg(pExecuteObject pEo,
char *pszFileName

);

1.19.11 hook fileexists

int hook_exists(pExecuteObject pEo,
char *pszFileName

);



Chapter 1: Introduction 119

1.19.12 hook truncate

int hook_truncate(pExecuteObject pEo,
FILE *fp,
long lNewFileSize

);

1.19.13 hook fgetc

int hook_fgetc(pExecuteObject pEo,
FILE *fp

);

1.19.14 hook ferror

int hook_ferror(pExecuteObject pEo,
FILE *fp

);

1.19.15 hook fread

int hook_fread(pExecuteObject pEo,
char *buf,
int size,
int count,
FILE *fp

);

1.19.16 hook setmode

void hook_setmode(pExecuteObject pEo,
FILE *fp,
int mode

);

1.19.17 hook binmode

void hook_binmode(pExecuteObject pEo,
FILE *fp

);

1.19.18 hook textmode

void hook_textmode(pExecuteObject pEo,
FILE *fp

);



120 ScriptBasic Source Files

1.19.19 hook fwrite

int hook_fwrite(pExecuteObject pEo,
char *buf,
int size,
int count,
FILE *fp

);

1.19.20 hook fputc

int hook_fputc(pExecuteObject pEo,
int c,
FILE *fp

);

1.19.21 hook flock

int hook_flock(pExecuteObject pEo,
FILE *fp,
int iLockType

);

1.19.22 hook lock

int hook_lock(pExecuteObject pEo,
FILE *fp,
int iLockType,
long lStart,
long lLength

);
return file_lock(fp,iLockType,lStart,lLength);

1.19.23 hook feof

int hook_feof(pExecuteObject pEo,
FILE *fp

);

1.19.24 hook mkdir

int hook_mkdir(pExecuteObject pEo,
char *pszDirectoryName

);

1.19.25 hook rmdir

int hook_rmdir(pExecuteObject pEo,



Chapter 1: Introduction 121

char *pszDirectoryName
);

1.19.26 hook remove

int hook_remove(pExecuteObject pEo,
char *pszFileName

);

1.19.27 hook deltree

int hook_deltree(pExecuteObject pEo,
char *pszDirectoryName

);

1.19.28 hook MakeDirectory

int hook_MakeDirectory(pExecuteObject pEo,
char *pszDirectoryName

);

1.19.29 hook opendir

DIR *hook_opendir(pExecuteObject pEo,
char *pszDirectoryName,
tDIR *pDirectory

);

1.19.30 hook readdir

struct dirent *hook_readdir(pExecuteObject pEo,
DIR *pDirectory

);

1.19.31 hook closedir

void hook_closedir(pExecuteObject pEo,
DIR *pDirectory

);

1.19.32 hook sleep

void hook_sleep(pExecuteObject pEo,
long lSeconds

);



122 ScriptBasic Source Files

1.19.33 hook curdir

int hook_curdir(pExecuteObject pEo,
char *Buffer,
unsigned long cbBuffer

);

1.19.34 hook chdir

int hook_chdir(pExecuteObject pEo,
char *Buffer

);

1.19.35 hook chown

int hook_chown(pExecuteObject pEo,
char *pszFileName,
char *pszOwner

);

1.19.36 hook SetCreateTime

int hook_SetCreateTime(pExecuteObject pEo,
char *pszFileName,
long lTime

);

1.19.37 hook SetModifyTime

int hook_SetModifyTime(pExecuteObject pEo,
char *pszFileName,
long lTime

);

1.19.38 hook SetAccessTime

int hook_SetAccessTime(pExecuteObject pEo,
char *pszFileName,
long lTime

);

1.19.39 hook gethostname

int hook_gethostname(pExecuteObject pEo,
char *pszBuffer,
long cbBuffer

);



Chapter 1: Introduction 123

1.19.40 hook gethost

int hook_gethost(pExecuteObject pEo,
char *pszBuffer,
struct hostent *pHost

);

1.19.41 hook tcpconnect

int hook_tcpconnect(pExecuteObject pEo,
SOCKET *sClient,
char *pszRemoteSocket

);

1.19.42 hook tcpsend

int hook_tcpsend(pExecuteObject pEo,
SOCKET sClient,
char *pszBuffer,
long cbBuffer,
int iFlags

);

1.19.43 hook tcprecv

int hook_tcprecv(pExecuteObject pEo,
SOCKET sClient,
char *pszBuffer,
long cbBuffer,
int iFlags

);

1.19.44 hook tcpclose

int hook_tcpclose(pExecuteObject pEo,
SOCKET sClient

);

1.19.45 hook killproc

int hook_killproc(pExecuteObject pEo,
long pid

);

1.19.46 hook getowner

int hook_getowner(pExecuteObject pEo,



124 ScriptBasic Source Files

char *pszFileName,
char *pszOwnerBuffer,
long cbOwnerBuffer

);

1.19.47 hook fcrypt

char *hook_fcrypt(pExecuteObject pEo,
char *buf,
char *salt,
char *buff

);

1.19.48 hook CreateProcess

long hook_CreateProcess(pExecuteObject pEo,
char *pszCommandLine

);

1.19.49 hook CreateProcessEx

long hook_CreateProcessEx(pExecuteObject pEo,
char *pszCommandLine,
long lTimeOut,
unsigned long *plPid,
unsigned long *plExitCode

);

1.19.50 hook waitpid

int hook_waitpid(pExecuteObject pEo,
long pid,
unsigned long *plExitCode

);

1.19.51 hook CallScribaFunction

This is a hook function that performs its operation itself without calling underlying
file_ function. This function is called by external modules whenever the external module
wants to execute certain ScriptBasic function.

The external module has to know the entry point of the ScriptBasic function.
int hook_CallScribaFunction(pExecuteObject pEo,

unsigned long lStartNode,
pFixSizeMemoryObject *pArgument,
unsigned long NumberOfPassedArguments,
pFixSizeMemoryObject *pFunctionResult

);



Chapter 1: Introduction 125

1.20 options.c

Each BASIC interpreter maintains a symbol table holding option values. These option
values can be set using the BASIC command OPTION and an option value can be retrieved
using the function OPTION().

An option has an integer value (long). Options are usually used to alter the behaviour of
some commands or modules, altough BASIC programs are free to use any string to name an
option. For example the option compare may alter the behavior of the string comparision
function to be case sensitive or insensitive:

OPTION compare 1

Unitialized options are treated as being zero. There is no special option value for unini-
tialized options. In other words BASIC programs can not distinguish between unitialized
options and options having the value zero.

This file contains the functions that handle the option symbol table. The option symbol
tableis pointed by the field OptionsTable of the execution object. This pointer is initialized
to be NULL, which means no options are available, or in other words all options are zero.

1.20.1 options Reset

Calling this function resets an option. This means that the memory holding the long
value is released and the pointer that was pointing to it is set NULL.

int options_Reset(pExecuteObject pEo,
char *name

);

1.20.2 options Set

This function sets a long value for an option. If the option did not exist before in the
symbol table it is inserted. If the symbol table was empty (aka OptionsTable pointed
NULL) the symbol table is also created.

If the symbol already existed with some long value then the new value is stored in the
already allocated place and thus the caller may store the pointer to the long returned by See
〈undefined〉 [GetR], page 〈undefined〉 and access possibly updated data without searching
the table again and again.

int options_Set(pExecuteObject pEo,
char *name,
long value

);

The function returns zero if the option was set or 1 if there was a memory failure.

1.20.3 options Get

This function retrieves and returns the value of an option data.



126 ScriptBasic Source Files

long options_Get(pExecuteObject pEo,
char *name

);

The return value is the option value or zero in case the option is not set.

1.20.4 options GetR

This function retrieves and returns the value of an option data.

long *options_GetR(pExecuteObject pEo,
char *name

);

The return value is a long * pointer to the option value or NULL if the option is not set.
If the caller sets the long variable pointed by the returned pointer the value of the option
is changed directly.

1.21 report.c

This file contains a simple error report handling function that prints the error to the
standard error.

This is a default reporting function used by most variations of ScriptBasic. However some
variations like the ISAPI one needs to implements a function having the same interface.

1.21.1 report report()

This function implements the default error reporting function for both run-time and
parse time errors and warnings.

void report_report(void *filepointer,
char *FileName,
long LineNumber,
unsigned int iErrorCode,
int iErrorSeverity,
int *piErrorCounter,
char *szErrorString,
unsigned long *fFlags

);

Aguments:

filepointer is a void * pointer. The default value of this pointer is stderr unless the
variation sets it different. This implementation uses this pointer as a FILE * pointer.
Other implementations of this function may use it for any other purpose so long as
long the usage of this pointer fits the variation.
FileName is the name of the source file where the error was detected. This parameter
is NULL in case of a run-time error. The reporting function is encouraged to display
this information for the user.



Chapter 1: Introduction 127

LineNumber is the line number within the source file where the error has happened.
This parameter is valid only in case the parameter FileName is not NULL
iErrorCode is the error code.
iErrorSeverity should define the severity of the error. It can be REPORT_INFO,
REPORT_WARNING, REPORT_ERROR, REPORT_FATAL, REPORT_INTERNAL. Whenever the
error severity is above the warning level the *piErrorCounter has to be incremented.
piErrorCounter points to an int counter that counts the number of errors. If there
are errors during syntax analysis the ScriptBasic interpreter stops its execution before
starting execution.
szErrorString is an optional error parameter string and not the displayable error
message. The error message is stored in the global constant array en_error_messages.
This string may contain a %s control referring to the error parameter string.
fFlags is an unsigned long bit field. The bits currently used are: REPORT_F_CGI
is set if the error is to be reported as a CGI script. See the code for more details.
REPORT_F_FRST is reset when the report function is called first time and is set by the
report function. This allows the report function to report a header in case it needs.
Other bits are reserved for later use.

1.22 logger.c

This module can be used to log events. The module implements two type of logs.
synchronous logs
asynchronous logs

Synchronous logs are just the normal plain logging technic writing messages to a log file.
This is low performance, because the caller has to wait until the logging is performed and
written to a file. On the other hand this is a safe logging.

Asynchronous logging is a fast performance logging method. In this case the caller passes
the log item to the logger. The logger puts the item on a queue and sends it to the log file
in another thread when disk I/O bandwith permits. This is high performance, because the
caller does not need to wait for the log item written to the disk. On the other hand this
logging is not safe because the caller can not be sure that the log was written to the disk.

The program using this module should use asynchronous logging for high volume logs
and synchronous logging for low volume logging. For example a panic log that reports
configuration error has to be written synchronously.

Using this module you can initialize a log specifying the file where to write the log, send
logs and you can tell the log to shut down. When shutting down all waiting logs are written
to the file and no more log items are accepted. When all logs are written the logging thread
terminates.

1.22.1 log state()

This function safely returns the actual state of the log. This can be:
LOGSTATE_NORMAL the log is normal state accepting log items



128 ScriptBasic Source Files

LOGSTATE_SHUTTING the log is currently performing shut down, it does not accept any
log item
LOGSTATE_DEAD the log is shut down all files are closed
LOGSTATE_SYNCHRONOUS the log is synchronous accepting log items
int log_state(ptLogger pLOG
);

1.22.2 log init()

Initialize a log. The function sets the parameters of a logging thread. The parameters
are the usual memory allocation and deallocation functions and the log file name format
string. This format string can contain at most four %d as formatting element. This will be
passed to sprintf with arguments as year, month, day and hour in this order. This will
ease log rotating.

Note that log file name calculation is a CPU consuming process and therefore it is not
performed for each log item. The log system recalculates the log file name and closes the
old log file and opens a new one whenever the actual log to be written and the last log
wrote is in a different time interval. The time interval is identified by the time stamp value
divided (integer division) by the time span value. This is 3600 when you want to rotate the
log hourly, 86400 if you want to rotate the log daily. Other rotations, like monthly do not
work correctly.

To do this the caller has to set the TimeSpan field of the log structure. There is no
support function to set this.

For example:

if( log_init(&ErrLog,alloc_Alloc,alloc_Free,pM_AppLog,CONFIG("log.err.file"),LOGTYPE_NORMAL) )
return 1;

if( cft_GetEx(&MyCONF,"log.err.span",&ConfNode,NULL,&(ErrLog.TimeSpan),NULL,NULL) )
ErrLog.TimeSpan = 0;

as you can see in the file ad.c Setting TimeSpan to zero results no log rotation.
Note that it is a good practice to set the TimeSpan value to positive (non zero) even if

the log is not rotated. If you ever delete the log file while the logging application is running
the log is not written anymore until the log file is reopened.

The log type can be LOGTYPE_NORMAL to perform asynchronous high performance logging
and LOGTYPE_SYNCHRONOUS for syncronous, "panic" logging. Panic logging keeps the file
continously opened until the log is shut down and does not perform log rotation.

int log_init(ptLogger pLOG,
void *(*memory_allocating_function)(size_t, void *),
void (*memory_releasing_function)(void *, void *),
void *pMemorySegment,
char *pszLogFileName,
int iLogType

);



Chapter 1: Introduction 129

1.22.3 log printf()

This function can be used to send a formatted log to the log file. The function creates
the formatted string and then puts it onto the log queue. The log is actually sent to the
log file by the asynchronous logger thread.

int log_printf(ptLogger pLOG,
char *pszFormat,
...

);

1.22.4 log shutdown()

Calling this function starts the shutdown of a log queue. This function allways return
0 as success. When the function returns the log queue does not accept more log items,
however the queue is not completely shut down. If the caller wants to wait for the queue to
shut down it has to wait and call the function See 〈undefined〉 [log state], page 〈undefined〉
to ensure that the shutdown procedure has been finished.

int log_shutdown(ptLogger pLOG
);

1.23 thread.c

This file implements global thread handling functions. If the programmer uses these
functions instead of the operating system provided functions the result will be Windows NT
and UNIX portable program. These routines handling thread and mutex locking functions
had been extensively tested in commercial projects.

1.23.1 thread CreateThread

This is a simplified implementation of the create thread interface.
The function creates a new detached thread. If the thread can not be created for some

reason the return value is the error code returned by the system call pthread_start on
UNIX or GetLastError on NT.

If the thread was started the return value is 0.
int thread_CreateThread(PTHREADHANDLE pThread,

void *pStartFunction,
void *pThreadParameter

);

The arguments
pThread is a thread handle. This should be a pointer to a variable of type
THREADHANDLE. This argument is set to hold the thread handle returned by
CreateThread on NT or the pointer returned as first argument of pthread_create
under UNIX. This argument is not used further in this module but can be used if
calling system dependant functions.



130 ScriptBasic Source Files

pStartFunction should be a pointer pointing to the start function where the thread
should start. This is usually just the name of the function to start in the separate
thread.
pThreadParameter is the pointer passed as argument to the start function.

1.23.2 thread ExitThread

Exit from a thread created by See 〈undefined〉 [CreateThread], page 〈undefined〉. The
implementation is simple and does not allow any return value from the thread.

void thread_ExitThread(
);

1.23.3 thread InitMutex

This function initializes a MUTEX variable. A MUTEX variable can be used for exclusive
access. If a mutex is locked another lock on that mutex will wait until the first lock is
removed. If there are several threads waiting for a mutex to be released a random thread
will get the lock when the actually locking thread releases the mutex. In other words if
there are several threads waiting for a mutex there is no guaranteed order of the threads
getting the mutex lock.

Before the first use of a MUTEX variable it has to be initialized calling this function.
void thread_InitMutex(PMUTEX pMutex
);

Arguments:
pMutex should point to a mutex variable of the type MUTEX

1.23.4 thread FinishMutex

When a mutex is not used anymore by a program it has to be released to free the system
resources allocated to handle the mutex.

void thread_FinishMutex(PMUTEX pMutex
);

Arguments:
pMutex should point to an initialized mutex variable of the type MUTEX

1.23.5 thread LockMutex

Calling this function locks the mutex pointed by the argument. If the mutex is currently
locked the calling thread will wait until the mutex becomes available.

void thread_LockMutex(PMUTEX pMutex
);

Arguments:
pMutex should point to an initialized mutex variable of the type MUTEX



Chapter 1: Introduction 131

1.23.6 thread UnlockMutex

Calling this function unlocks the mutex pointed by the argument. Calling this func-
tion on a mutex currently not locked is a programming error and results undefined result.
Different operating system may repond different.

void thread_UnlockMutex(PMUTEX pMutex
);

Arguments:
pMutex should point to an initialized mutex variable of the type MUTEX

1.23.7 thread shlckstry

The following functions implement shared locking. These functions do not call system
dependant functions. These are built on the top of the MUTEX locking functions.

A shareable lock can be READ locked and WRITE locked. When a shareable lock is
READ locked another thread can also read lock the lock.

On the other hand a write lock is exclusive. A write lock can appear when there is no
read lock on a shareable lock and not write lock either.

The story to understand the workings:
Imagine a reading room with several books. You can get into the room through a small

entrance room, which is dark. To get in you have to switch on the light. The reading room
has a light and a switch as well. You are not expected to read in the dark. The reading room
is very large with several shelves that easily hide the absent minded readers and therefore
the readers can not easily decide upon leaving if they are the last or not. This actually led
locking up late readers in the dark or the opposite: lights running all the night.

To avoid this situation the library placed a box in the entrance room where each reader
entering the room have to place his reader Id card. When they leave they remove the card.
The first reader coming switches the light on, and the last one switches the light off. Coming
first and leaving last is easily determined looking at the box after dropping the card or after
taking the card out. If there is a single card after dropping the reader card into you are the
first coming and if there is no card in it you took your one then you are the last.

To avoid quarreling and to save up energy the readers must switch on the light of the
entrance room when they come into and should switch it off when they leave. However
they have to do it only when they go into the reading room, but not when leaving. When
someone wants to switch a light on, but the light is already on he or she should wait until
the light is switched off. (Yes, this is a MUTEX.)

When the librarian comes to maintain ensures that no one is inside, switches the light
of the entrance room on, and then switches the reading room light on. If someone is still
there he cannot switch the light on as it is already switched on. He waits until the light is
switched off then he switches it on. When he has switched the light of the reading room on
he switches the light of the entrance room off and does his job in the reading room. Upon
leaving he switches off the light of the reading room.

Readers can easily enter through the narrow entrance room one after the other. They
can also easily leave. When the librarian comes he can not enter until all readers leave the



132 ScriptBasic Source Files

reading room. Before getting into the entrance room he has equal chance as any of the
readers.

1.23.8 thread InitLock

void shared_InitLock(PSHAREDLOCK p
);

1.23.9 thread FinishLock

void shared_FinishLock(PSHAREDLOCK p
);

1.23.10 thread LockRead

void shared_LockRead(PSHAREDLOCK p
);

1.23.11 thread LockWrite

void shared_LockWrite(PSHAREDLOCK p
);

1.23.12 thread UnlockRead

void shared_UnlockRead(PSHAREDLOCK p
);

1.23.13 thread UnlockWrite

void shared_UnlockWrite(PSHAREDLOCK p
);

1.24 hndlptr.c

The functions in this file help the various ScriptBasic extension modules to avoid crashing
the system even if the BASIC programs use the values passed by the module in a bad way.

For example a database handling module opens a database and allocates a structure
describing the connection. The usual way to identify the structure is to return a BASIC
string variable to the BASIC code that byte by byte holds the value of the pointer. This
works on any machine having 32bit or 64bit pointers because strings can be arbitrary length
in ScriptBasic.

When another external module function need access to the structure it needs a pointer
to it. This is easily done by passing the string variable to the module. The module converts
the string variable back byte by byte to a pointer and all is fine.

Is it?



Chapter 1: Introduction 133

The issue is that the BASIC program may alter the pointer and pass a string containg
garbage back to the module. The module has no way to check the correctness tries to use it
and crashes the whole interpreter. (Even the other interpreters running in the same process
in different threads.)

=bold ScriptBasic external modules should never ever pass pointers in strings back to
the BASIC code. =nobold

(Even that some of the modules written by the ScriptBasic developers followed this
method formerly.)

The better solution is to store these module pointers in arrays and pass the index of
the pointer in the array to the basic application. This way the BASIC program will get
INTEGER values instead of STRING and will not be able to alter the pointer value and
crash the program.

To store the pointer and get the index (we call it a handle) these functions can be used.

Whenever a pointer needs a handle the module has to call GetHandle. This function
stores the pointer and returns the handle to it. When the BASIC program passes the handle
back to the module and the module needs the pointer associated with the handle it has to
call GetPointer.

When a pointer is not needed anymore the handle should be freed calling FreeHandle.

This implementation uses arrays to hold the pointers. The handles are the indexes to
the array. The index 0 is never used. Handle value zero is returned as an invalid handle
value whenever some error occures, like out of memory condition.

1.24.1 handle GetHandle

Having a pointer allocate a handle. This function stores the pointer and returns the
handle.

The handle is a small positive integer.

If any error is happened (aka out of memory) zero is returned.

unsigned long handle_GetHandle(void **pHandle,
void *pMEM,
void *pointer

);

The first argument pHandle is a pointer to the handle array.
The second argument pMEM is the memory segment that is to be used to allocate mem-
ory.
The last argument pointer is the pointer to store.

Note that NULL pointer can not be stored in the array.

The pointer to the handle array pHandle should be initialized to NULL before the first
call to handle_GetHandle. For example:

void *Handle = NULL;
....

if( !handle_GetHandle(&Handle,pMEM,pointer) )return ERROR_CODE;



134 ScriptBasic Source Files

1.24.2 handle GetPointer

This function is the opposite of See 〈undefined〉 [GetHandle], page 〈undefined〉. If a
pointer was stored in the handle array this function can be used to retrieve the pointer
knowing the handle.

void *handle_GetPointer(void **pHandle,
unsigned long handle

);

The first argument pHandle is the pointer to the handle array. =ite, The second
argument handle is the handle of the pointer.

If there was not pointer registered with that handle the return value of the function is
NULL.

1.24.3 handle FreeHandle

Use this function when a pointer is no longer valid. Calling this function releases the
handle for further pointers.

void handle_FreeHandle(void **pHandle,
unsigned long handle

);

1.24.4 handle DestroyHandleArray

Call this function to release the handle array after all handles are freed and there is no
need for the handle heap.

Use the same memory head pMEM that was used in See 〈undefined〉 [GetHandle], page 〈un-
defined〉.

void handle_DestroyHandleArray(void **pHandle,
void *pMEM

);

1.25 httpd.c

1.25.1 httpd module

This module is used only by the standalone webserver variation of ScriptBasic.

The module contains a function See 〈undefined〉 [httpd], page 〈undefined〉 that the main
application should start. This function calls the initialization function See 〈undefined〉
[AppInit], page 〈undefined〉 and the application starting functios See 〈undefined〉 [AppStart],
page 〈undefined〉. After See 〈undefined〉 [AppStart], page 〈undefined〉 returns it starts to
listen on the configured port and accepts http requests and passes the requests to See
〈undefined〉 [HttpProc], page 〈undefined〉.



Chapter 1: Introduction 135

1.25.2 AppInit

=bold This function is not implemented in this module. This function is used by this
module and the program using this module should provide this function. =nobold

This function is called by the function See 〈undefined〉 [httpd], page 〈undefined〉 practi-
cally before anything is done.

int AppInit(int argc,char *argv[],pHttpdThread pHT,void **AppData),

The See 〈undefined〉 [httpd], page 〈undefined〉 function passes the command line argu-
ments back as it gets them plain. The pointer pApp points to an applicatrion specific void
pointer that is initialized to be NULL and is guaranteed not been changed. The pointer
to the same void pointer is passed also to See 〈undefined〉 [AppStart], page 〈undefined〉.
This pointer should be used to pass data between AppInit and See 〈undefined〉 [AppStart],
page 〈undefined〉.

The pointer pHT points to a HttpThread structure and the function AppInit can change
the values of this structure.

The entry point of the function AppInit should be given to the function See 〈undefined〉
[httpd], page 〈undefined〉 as argument.

1.25.3 AppStart

=bold This function is not implemented in this module. This function is used by this
module and the program using this module should provide this function. =nobold

This function is called by See 〈undefined〉 [httpd], page 〈undefined〉 after binding on
the desired port, and after forking to background on UNIX. This function should start all
threads instead of See 〈undefined〉 [AppInit], page 〈undefined〉, otherwise the forking looses
all threads except the main thread. The first version of this code started the logger threads
before the fork and the parent exited with the running logger threads whil the child daemon
did not run the logger threads.

int AppStart(void **pApp);

1.25.4 HttpProc

=bold This function is not implemented in this module. This function is used by this
module and the program using this module should provide this function. =nobold

This function is called by See 〈undefined〉 [httpd], page 〈undefined〉 for each hit in a
separate thread.

void HttpProc(pHttpdThread pHT,pThreadData ThisThread);

1.25.5 FtpProc

=bold This function is not implemented in this module. This function is used by this
module and the program using this module should provide this function. =nobold

This function is called by See 〈undefined〉 [httpd], page 〈undefined〉 for each ftp com-
mand.

void FtProc(pHttpdThread pHT,pThreadData ThisThread, char *pszCommand);


